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Abstract

Large-scale societal events such as civil unrest move-
ments occur due to a variety of factors including eco-
nomics, politics, and security. Societal event detection
can be modeled as a system of inter-connected locations,
where each location is recording a set of time-dependent
observations. In order to detect event occurrence and
automatically reconstruct the precursors and signals, it
is essential to model relationships between the different
locations w.r.t. how events evolve over time. However,
existing methods for precursor discovery do not cap-
ture or exploit spatial and temporal correlations inher-
ent in event occurrences. The absence of such modeling
not only creates shortcomings in the quality of inference
but also curtails interpretation by human analysts. Fur-
thermore, forecasting is inhibited when training data is
sparse. In this paper, we develop a novel multi-task
model with dynamic graph constraints within a multi-
instance learning framework. Our model tackles the
problem of scarce data distribution and reinforces co-
occurring location-specific precursors with augmented
representations. Through studies on civil unrest move-
ments in numerous countries, we demonstrate the effec-
tiveness of the proposed method for precursor discovery
and event forecasting.
Keywords: Multi-task learning; spatio-temporal pre-
cursor learning; event correlation.

1 Introduction

While studying large scale societal events, policy makers
and professionals aim to reconstruct precursors to such
events to help understand causative attributes. Given
a document reporting an event of interest (e.g., a
civil protest), precursors are other documents published
earlier than reported incidents or happenings and can
be viewed as influential in the lead up to the protest.
Such analysis is typically done painstakingly with the
aid of subject matter experts, but new algorithmic
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Jan. 20, 2015:  the National 
Assembly and the Senate 
Foreign Relations Committee 
had passed resolutions 
condemning the publication of 
the French magazine Jan. 23, 2015: 

Jamaat-e-Islami (JI) Ameer 
Sirajul Haq on Friday asked 
the French government and 
the magazine to apologize

Jan. 24, 2015:  
Jamaatud Dawa (JuD) chief 
Hafiz Muhammad Saeed 
said the Muslims will launch 
a global movement against it

Jan. 27, 2015: Hundreds of 
students protested against a 
French magazine and 
stormed a school demanding 
it close

Bannu

Figure 1: Precursor event sequence discovered by our
method for a protest event.

tools [13] have recently emerged that support such
precursor discovery. A key challenge that persists is
the incorporation of spatial and temporal correlations
inherent in large-scale societal event occurrences. For
example, civil unrest (protests or strikes) in a city is
often influenced by happenings at nearby locations and
while event counts might not be comparable, there is
significant temporal and spatial correlation across event
occurrences.

Figure 1 shows a precursor event sequence discov-
ered by our proposed model. The target event is a stu-
dent protest against a French satirical magazine in the
city of Bannu in Pakistan. One week before this event,
there were several highly related events that occurred in
other cities and may have influenced this target event
of interest. For instance, the government of Pakistan
passed resolutions condemning the publication in this
French magazine. Later, different groups expressed con-
cern in small gatherings in Islamabad and Lahore fol-
lowed by protests in multiple cities including Bannu.

In this paper, we propose STAPLE, a multi-task
Spatio-TemporAl Precursor Learning and Event fore-
casting framework for multiple cities, specifically de-
signed to discover precursors across geolocations with
imbalanced class distributions and partial labels. The
primary datasets of interest are open source news arti-
cles across the world encoded into events, where each
event has vital information including a timestamp (in
granularity of days), a geolocation (at the city level),
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a description (plain text), and an event type (e.g.,
protests). Our objective is to build forecasting models
for specific cities and to identify evidential precursors
from multiple cities in the past news articles.

This problem is non-trivial and poses several unique
challenges: (i) Temporal ordering constraints on events.
Events are often carefully sequenced in terms of their
precursors and ignoring temporal information that is in-
herent in event evolution leads to unsatisfactory results.
(ii) Lack of class labels for precursor documents. While
events of interest can be manually (or automatically) de-
tected and classified, labels for associated precursor doc-
uments (which are larger in number) are not available
and are expensive to obtain. (iii) Data scarcity and im-
balanced distribution in certain geolocations. Although
a few transfer learning algorithms [19, 16, 20] support
inference of the type considered here, none of them
can tackle the data insufficiency problem in the pres-
ence of spatio-temporal correlations. (iv) Inadequacy of
static features. It has been demonstrated [22] that suc-
cessful event forecasting requires moving beyond static
features, e.g., combining keyword frequencies with dy-
namic graph features. Thus the proposed forecasting
models must support learning of appropriate represen-
tations inherently within its model-building.

We observe that by taking advantage of spatio-
temporal event correlations within a multi-task learning
framework, about 86% of the cities in our dataset have
improved F1 scores compared to the best state-of-the-
art algorithm. 60% of cities have more than 20%
improvements in F1 score, especially for cities with less
training data. We summarize the key contributions of
this paper as follows:

• Dynamic graph constraints for precursor
learning and event forecasting: Our model ex-
ploits event count correlations across multiple loca-
tions under dynamic temporal constraints for jointly
forecasting events and identifying precursors. A fu-
sion penalty is proposed to coordinate the forecasting
tasks in related cities.

• Augmented representation learning for pre-
cursors: By integrating document and entity embed-
dings within a multiple instance learning framework,
it assists the prediction model to track significant en-
tities that are evident based on their estimated prob-
abilities.

• Multi-task learning for precursor mining: It al-
leviates the data insufficiency problem by simultane-
ously learning multiple related tasks and restricting
all cities to share a common set of features with a
consensus model.
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Figure 2: Overall System Framework.

• Comprehensive set of experiments in real-
world data: We evaluate the proposed model on
real-world datasets collected from six countries and
more than one hundred cities. We conduct quanti-
tative and qualitative analyses on the precursors in-
ferred by the proposed model.

2 Problem Statement

Given multiple cities (or geolocations) within a country,
we focus on the problem of predicting the occurrence of
a future protest within a target city using captured open
source news feeds. Figure 2 provides an overview of our
proposed approach. Specifically, we hypothesize that
the correlations between events occurring across “space”
and “time” lead us to effectively forecast future events
of interest. Besides forecasting the protest, we also aim
to identify specific news articles as precursors across
different locations for manual inspection. Our proposed
STAPLE model seeks to capture these correlations by
jointly training the models across different cities within
a nested multiple instance learning framework [13].

Formally, given a set of multiple cities K, each city
k, has a set of associated news articles and event indica-
tors (i = 1, ..., Nk) which are denoted by (Xk, Y k).

Y ki =

{
1 if an event occurs after Xk

i

0 otherwise
(2.1)

The news articles published H days before an indicator
are given by Xk

i (bag). The proposed prediction model
seeks to estimate the probability of occurrence of a
future event in city k, P ki given Xk

i . Since instance-
level labels are not provided, simple multi-instance
learning(MIL) structures or complicated layers of MIL
can both be applied in this problem. Given the reported
performance [13], we use the nested multiple instance
learning approach that allows for the transfer of class
labels (target events) to individual news articles. It
provides probabilistic estimates per document, per day,
and per event for each city. The key contribution
of this work is to formalize a multi-task precursor
learning model to study dynamic temporal relationships
of multiple geolocations. Also, we derive an optimization
method to solve this problem.
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3 Methodology Design

3.1 The Proposed Model Given K cities, let us as-
sume Θ = (θ1, ...,θk, ...,θK) be the model parameters
to be learned for each of the cities, where θk ∈ Rm, and
m is the dimension of the feature space representing
each document. We model the document-level proba-
bility estimates phj for a news article j published on
day h in city k to associate with the event of inter-
est using a logistic function given by phj = σ(xThjθ

k)

where σ(a) = 1/(1+e−a). Document embeddings (xhj)
are described in detail in Section 3.3. A specific docu-
ment is considered to be more related to the event of
interest when the probability estimate is high. Using
the learned θk for a city, the nested multiple instance
learning framework provides probabilistic estimates by
averaging at the day-level (intermediate level) and at
the event-level which considers a set of consecutive days
before the target event.

The STAPLE model seeks to jointly learn the
different model vectors, Θ, across the K cities using
the multi-task learning paradigm, given by:

min
Θ

∑
k∈K

Nk
N
L(θk) + λR(Θ)(3.2)

where Nk is the number of training examples available
for city k and N is the total number of training ex-
amples across all the cities. L is the loss function and
R is the regularization function. The two-level multi-
ple instance loss function is designed to minimize the
prediction error associated with forecasting events, to
enforce consistency in probabilistic estimates obtained
for consecutive days, and also to maximize the difference
between positive and negative instances using an unsu-
pervised hinge loss function. The regularization term
explicitly captures the spatio-temporal correlations be-
tween the occurrence of events across different cities. A
more specific form of the objective function correspond-
ing to Eq. (3.2) is given below:

min
Θ

∑
k∈K

(Nk
N
L(θk) +

λ1

2

Nk∑
i

∑
l∈Gt

αtik,l
(
θk − θl

)2
(3.3)

+
λ2

2
||θ̂ − θk||22 +

λ3

2
||θk||22

)
where k, l are the indices for cities, θk is the model
parameter for city k, θ̂ represents the global model, ti is
the time index for the current event indicator, αtik,l is the
weight between city k and city l at time ti, λ1, λ2, λ3 are
hyperparameters. Different types of penalty functions
allow us to enforce different behaviors in the evolution
of the event across multiple geolocations.

Within the MTL framework the regularization term
is designed to enforce different penalties such that
related tasks share similar features or model parameters.
The STAPLE model explicitly enforces pairs of cities
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Figure 3: An example of the spatio-temporal correlation
graph. Each node (A,B,C,D) represents a city. An
edge between two nodes indicates that the same type
of events occurred in the same time window for these
two cities.

within a country that have seen similar events occur
in the past learn similar model vectors. Gti is the
correlation graph for time ti that determines the tasks
(cities) with similar event profiles to each other.

3.2 Event Correlation Graph We demonstrate
the concept of the spatio-temporal correlation graph in
Figure 3. Each node represents a city in a country. To
predict the occurrence of a protest in city A on April 1,
2015, the model analyzes the past few days of data to
discover if there is an event in city A and also in other
cities (i.e., city B, C and D) from Mar. 20 to Mar.
31, 2015. The weight on the edge denotes the minimum
number of common events between the two cities. From
Mar. 20-23, the neighbor network for city A consists of
three cities B,C,D with two types of events. αtik,l is the
normalized weight on the edge between city k and city
l, given by:

αtik,l =
(∑

c

ti∑
t=ti−H

min(Ekt (c), Elt(c))
)′

+
( 1

dist(k, l)

)′(3.4)

Here c is the event type (such as a protest), and
Ekt (c) is the number of events of type c in city k that
occur within time window t. We scale the value of
event count and 1/dist() by feature scaling function

(x)′ = (x−xmin)
xmax−xmin

into a range of (0.0, 1.0). Given
the spatio-temporal correlation graph G and the edge
weights, it is reasonable to assume that two cities
will share several common edges, as they tend to
be influenced by the same set of covariates. When
a city has large number of training examples, the
empirical loss helps to reduce the prediction error.
The spatio-temporal correlation constraint captures the
task relatedness between multiple cities within a given
time period. The dist function returns the distance
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Figure 4: Learning representations. Top portion cor-
responds to the document embeddings and the bottom
portion corresponds to the entity embeddings.

between city k and city l. We assume that two
cities that are far away from each other have fewer
correlations/similarities in their models.

Besides the spatio-temporal constraints we also
enforce the learned individual model vectors to not
deviate from the global average along with a l2-norm
constraint on the weight vectors. The regularization
parameters control the model complexity by enhancing
robustness and the MTL constraints alleviate the data
insufficiency problem for each individual task (if learned
separately).

3.3 Learning Representations One of the chal-
lenges in precursor mining for event forecasting is to
select informative and related documents. A precur-
sor event is not necessarily similar in semantics to the
event of interest. In this work, we make use of aug-
mented distributed representations of the documents to
discover progression of precursors towards the target
events. More specifically, we study the following aspects
of representations for each historical news document x:

Document Embeddings: Recent work has shown
that the semantic relationships of words can be effec-
tively captured using the geometry of a continuous em-
bedding space [8, 12]. For the articles in each country,
we learn distributed representations (vectors) [8] for text
documents and utilize these embeddings in our experi-
ments.

Entity Embeddings: In many societal events, the
roles of significant entities such as government officers
or large organizations are substantial and sometimes
even influence the progression of events. We focus on
location names, person names, and organization names
as the primary entities of interest. Entity and relation
embeddings have been studied in structured learning
and knowledge graph modeling [10]. More specifically,
we use the Stanford Named Entity Recognizer (NER) [5]
to extract a set of entities for English and use a series
of language enrichment steps (see [14] for details) for
processing. We apply the Continuous Bag-of-Word
model (CBOW) [11] to each dataset to obtain word level

Algorithm 3.1 STAPLE Model Learning

1: Input: Dataset(Xk, Y k), k ∈ [1, ...K], τ

2: Output: Θ = [θ̂,θk]
3: for τ iterations do
4: randomize(Xk, Y k)
5: for city k in K do
6: for i ∈ [1, 2, ..., Nk] do
7: . training examples for city k
8: graph construct Gti
9: calculate αtik,l . Eq. (3.4)

10: calculate gradient ∇(Θ) . Eq. (3.5, 3.6)
11: update Θ using ∇(Θ) based on SGD

return Θ

embeddings. Finally, we aggregate the embeddings of
entities into the representation for text documents as
shown in Figure 4.

3.4 Optimization The optimization problem is
solved using the mini-batch gradient descent algorithm
for each of the model parameters, θk, described in Algo-
rithm 3.1. We update the weight vector using an adap-
tive learning rate θkτ+1 = θkτ − η∇(θk) where η is the
learning rate at the current iteration. More specifically,

θk ←θk − η
[
∂
L(θk)

θk
+ λ1

∑
l∈Gti

αtik,l(θ
k − θl)(3.5)

− λ2(θ̂ − θk) + λ3θ
k
]

θ̂ ←θ̂ − ηλ2(θ̂ − θk)(3.6)
For each city, we update the global model parameters
θ̂ and θk in an alternate manner. The spatio-temporal
correlation graph and the weights on edges are precom-
puted only using the training set.

3.5 STAPLE Model for Precursor Mining The
precursor documents are identified based on their esti-
mated probabilities from the learned model of each city
as described in Algorithm 3.2 from lines 3 to 11. We also
discover precursors for each city in the past time win-
dow from the neighboring cities (lines 12 to 17). For in-
stance, in Figure 3, the precursors for the protest event
in city A are also explored in the news articles geolo-
cated at its neighboring cities, B to D using the learned
model vectors for each of the cities. If the estimated
probability is above a certain threshold, we select it into
the precursor candidate pool for the target event in city
A. The time complexity is dependent on the number
of examples in the training dataset and the number of
historical documents for each event. Based on the esti-
mated probability of instances for events, the precursor
documents and entities can be selected in linear time
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Algorithm 3.2 STAPLE for Precursor Discovery

1: Input: Dataset (Xk, Y k), k ∈ [1, ...,K]
2: Output: the estimated probabilities set Q, the

discovered precursor set O.
3: Θ← call Algorithm 3.1 for training
4: for city k in K do
5: for i ∈ [1, 2, ..., Nk] do
6: for Xh ∈ Xk

i do
7: for xhj ∈ X kh do

8: estimate phj using θk

9: if phj ≥ 0.5 then
10: Oki ← xhj , Q

k
i ← phj

11: estimate P ki by Avg(phj)
12: get “neighbor” cities for k from Gti
13: for city l in the “neighbor” cities do
14: for h = [1, ...,H] do
15: for xhj ∈ X lh do

16: phj = σ(θl,xhj)
17: Oki ← xhj if phj ≥ ξ

return O,Q

with respect to the number of historical documents for
each event (lines 7 to 10).

4 Experimental Setup

4.1 Datasets We evaluated our models on event
encoded data from six countries. Among them,
three countries, Columbia (CO), Paraguay (PY), and
Venezuela (VE) are from a labeled set called Gold Stan-
dard Report (GSR) [14] from January 2014 to April
2015. The GSR is a manually curated dataset that
records civil unrest events from the ten most signifi-
cant news outlets as ranked by the International Me-
dia and Newspapers in each country. An example of
a recorded event is given by its city, state, country,
date, and event type. The other three datasets, Pak-
istan (PK), Iran (IR) and Afghanistan (AF) are from
the ICEWS dataset [4] which stands for Integrated Cri-
sis Early Warning System. It contains news articles
published all over the world with the goal of evaluat-
ing national and international crisis events. Events are
automatically identified and extracted by the BBN AC-
CENT event encoder. In our experiments, we only use
data from 2015 and 2016. Each news article is labeled in
one of the 20 categories. We use “protest” events as our
positive examples and no protest days (or other types of
events) as negative examples. We observe that the event
distribution varies significantly across cities, with large
cities having relatively more event occurrences com-
pared to small cities. Statistics about these datasets are
shown in Table 1. We use protests in the aforementioned

Table 1: Datasets used in our experiments. CO: Columbia,
PY: Paraguay, VE: Venezuela, PK: Pakistan, IR: Iran, AF:
Afghanistan

CO PY VE PK IR AF

# news 8,386 7,879 9,390 64,868 38,113 27,786
# events 604 971 1,911 1,291 1,084 713

Latin American and Middle East/Asian countries to
rigorously evaluate the performance of our framework
and also consider other countries (e.g., France) to pro-
vide case studies of how our framework works because
these countries feature more well-known protests (e.g.,
climate protests in France, see Table. 3).

4.2 Experimental Protocol We learn 300-
dimensional representations for documents and
100-dimensional embeddings for words. Each docu-
ment is represented by concatenating the document
and entity embeddings. The entity embedding is an
aggregation of each entity within the document. The
GSR and ICEWS datasets record protest events on
a given day at a specific location (city level). To
evaluate our proposed model, for each protest event,
we extract all the published reports (news articles) for
up to two weeks before the occurrence of the specific
event of interest. This ordered collection of per-day
news documents to the protest day are considered as
positive super bags. For negative examples, we identify
consecutive sets of days within our studied time periods
for each city when no protest event was reported.

4.3 Comparative Methods (1) Multi-Instance
SVM (MI-SVM [2]): The MI-SVM model extends
the notion of a margin from individual patterns to
bags. The margin is defined between the “most posi-
tive” instance of the positive bag and the “least neg-
ative” instance of the negative bag. We collapse the
news articles from the different historical days into one
bag and apply this standard MIL formulation based
on the SVM in scikit-learn 1. (2) Relaxed MIL
Model (rMILavg [18]): We estimate the probabil-
ity of each instance in a bag using a logistic func-
tion. We use the average of instance-level probabili-
ties to model the probabilities for bags. (3) Nested
MIL (nMIL [13]): This approach applies a nested level
of multi-instance learning for the event forecasting prob-
lem. It learns a “global” model for all cities in a country.
(4) Transfer model (STAPLE-tx): This method is
a simpler variant of the proposed model. Event fore-
casting for each city is considered as one task. We
first apply our objective function to cities with “rich”

1http://scikit-learn.org/stable/modules/svm.html
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Figure 5: Prediction performance (Recall, Precision,
and F1 scores) on six datasets for the comparison
methods.

datasets (more event examples). After learning models
for these source cities, we incorporate these models into
an average model with mean and standard deviation
µ, σ and transfer them to the cities that have “sparse”
datasets [15]. The target cities will then learn their
models by assuming that their model parameters are
drawn from a Gaussian distribution N(µ, σ) where S
denotes the set of source cities:

µ =
1

K − 1

∑
k∈S

θk, σ =

√
1

|S| − 1

∑
k∈S

(θ − µ)2(4.7)

5 Experimental Results

We perform a comprehensive empirical study to evalu-
ate the performance of the proposed models in terms of
event recall, event precision, and F1 score. We also ana-
lyze the quality of precursors with quantitative metrics
and detailed case studies that highlight the strengths of
the STAPLE model.

5.1 How well does STAPLE forecast? Fig-
ure 5 shows the prediction performance of MI-SVM,
rMILavg, nMIL and STAPLE methods in terms of
recall, precision, and F1 scores in the six datasets con-
sidered. The model hyperparameters, λ1, λ2 and, λ3 are
determined using a validation set for each country. m0

and p0 are set to 0.5 following [13]. For other compari-
son models, hyperparameters are chosen following their
criterion in their papers. The STAPLE method out-
performs the best state-of-the-art approach (nMIL) by

Table 2: F1 evaluation for the proposed methods (Text
Embeddings vs Text+Entity Embeddings) .

Text Text+Entity

Data Model F1 F1

AF
STAPLE-tx 0.772 0.783
STAPLE 0.910 0.910

IR
STAPLE-tx 0.880 0.893
STAPLE 0.895 0.904

PK
STAPLE-tx 0.729 0.725
STAPLE 0.730 0.713
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Figure 6: F1 lift per city using STAPLE compared
to state-of-the-art model, nMIL. X-axis denotes the
number of events at the city level. Y-axis denotes the
F1 lift from the STAPLE model.

16% to 35% for AF, IR, and PK and 5% to 15% for
CO and PY, in term of F1 scores. For CO and VE,
the STAPLE-tx model outperforms other methods in
terms of F1 score. The results in Table 2 demonstrate
that the methods that take into account the entity em-
beddings (second column) perform better than that of
using the document embeddings only (first column) for
AF and IR datasets but not for PK in terms of F1 score.

5.2 Does the Spatio-Temporal Event Correla-
tion Graph help? Figure 6 depicts the improvements
of F1 scores of the STAPLE model compared to the
nMIL model (F1 Lift = STAPLEF1−nMILF1

nMILF1
) versus

the number of events per city. We observe that the most
significant improvements are for cities such as Qom and
Kerman in Iran which are relatively small cities in their
respective countries.

5.3 How good are the precursors? Figure 7 shows
the average normalized Jaccard Index of precursor doc-
uments and non-precursor documents (with respect to
the target document) discovered by the STAPLE and
nMIL models. The normalized Jaccard index is com-
puted as the pairwise Jaccard index, scaled relative to
each event of interest. It is clear that the precursor doc-
uments have higher text-based similarity to the target
events compared to the non-precursor documents as in
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Figure 7: Comparison of the average normalized Jac-
card index for precursor news and non-precursor news
articles. (a) Shows the difference between Jaccard
scores for the precursor and non-precursor documents
for STAPLE and nMIL models. (b) Shows aver-
age normalized Jaccard index for precusor and non-
precursor documents for STAPLE.

Figure 7b. Figure 7a shows that the STAPLE model
discovers more semantically related documents to the
target events compared to the nMIL model [13] for
most of the countries.

5.4 Case Studies Table 3 demonstrates a case study
on precursor story lines identified by the STAPLE ap-
proach. The key strength of STAPLE is its ability
to leverage correlated events occurring across different
cities. For each protest event, e, in a city A, we form
a neighborhood city set based on the spatio-temporal
correlation graph. Then for each city in the graph, we
estimate the probabilities of news in the past week using
its model for event e. As long as the probability is above
a certain threshold, we select the news to be a precur-
sor candidate for this event: OAe ← x if p(x) ≥ ξ. We
studied ICEWS dataset from France as a case study. In
the case of a protest event in Paris, France; thousands
of activists started a protest pleading leaders to stop
global warming near the site of a former terror attack.
Our model successfully captured the following related
events leading up to this protest: A week earlier, peo-
ple in Toulouse marched for the devastating attacks in
Paris. Many countries announced they will be attend-
ing the upcoming Climate Change Summit (COP21) in
Paris. Two days before, Australia kicked off climate
rallies ahead of these global talks. One day before, ac-
tivists claimed the need to march for climate change
amid terror threats.

In all cases, our model captured the key change
points in the precursor story lines for protest events and
the key entity names (such as government officials) that
played a crucial role in the development of these events.

5.5 How early can the STAPLE model fore-
cast? Leadtime indicates the number of days in ad-
vance that the model makes predictions and historical
days denotes the number of days over which the news

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1  2  3  4  5

Te
st

 A
cc

ur
ac

y

LeadTime (day)

nMIL
STAPLE-tx

STAPLE

(a) PY

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5

Te
st

 A
cc

ur
ac

y

LeadTime (day)

nMIL
STAPLE-tx

STAPLE

(b) IR

Figure 8: Test accuracy for two countries over leadtime
ranging from 1 to 5 days. x-axis denotes the leadtime
and y-axis denotes the accuracy score over the test
dataset.
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Figure 9: Sensitivity analysis on hyper-parameters λ1

and λ2 (= λ3). X-axis represents the varying values of
λ1, λ2 and Y-axis denotes the test accuracy.

articles are extracted as input to the prediction algo-
rithms. In order to study the changes in performance
with and without the spatio-temporal event correlation
graph constraints, we present the accuracy (ACC) score
with varying lead times from 1 to 5 days for the STA-
PLE and the nMIL models in Figure 8. Due to space
constraints, we only depict results for PY and IR. The
STAPLE model is stable and consistently performs
better compared to others with varying values of lead-
time.

5.6 Sensitivity Analysis Figure 9 illustrates the
accuracy of the proposed STAPLE model on three test
dataset by varying the hyper parameters of λ1 and λ2

(= λ3). λ2 and λ3 are chosen to be the same according
to our parameter search result. The performance of
different values is relatively stable and is shown for only:
AF, PK, and IR countries due to the space constraints.

6 Related Work

Spatial Event Forecasting Predicting future
events of interest (e.g., protests) from large, heteroge-
neous, open source feeds is an important and active
area of research [21]. Over the years, supervised and
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Table 3: Automatically discovered precursor news stories and relevant entities for one protest event of interest.(i)
Precursors for an event in one city are inferred across other cities as well. (ii) Key entities participating in the
events provide explanatory power to the precursors. (iii) Probability of protest events gradually increases with
the accumulation of precursor events.

Date Location Precursor News Summary Entity Prob

2015-11-22 Toulouse
P1.More than 10,000 people marched Saturday in the French city of
Toulouse for peace and against “barbarity” a week after the devastating
attacks in the capital.

French, Toulouse 0.81

2015-11-23 Paris
P1.Wealthy governments and other donors need to invest more to
reduce carbon emissions stemming from agriculture, said a study issued
ahead of U.N. climate talks in Paris next week.

UN, Paris 0.68

2015-11-24 Paris
P1. China and US have vowed to join hands with France and other
parties to work toward success at the UN climate summit in Paris.

China, US, UN, Paris 0.81

2015-11-25 Paris
P1. The international community must secure a binding deal against
climate change at key UN talks in Paris next week, German Chancellor
Angela Merkel said Wednesday.

German, Angela
Merkel, UN, French,
Aquino, Paris

0.83

2015-11-26 Paris

P1. It comes days ahead of a major UN climate summit in Paris which
aims to forge an international deal to stop global warming.
P2. Pope Francis visited the world’s poorest continent to issue a clarion
call for the COP21.

UN, Pope Francis,
COP21, Paris

0.90

2015-11-27 Paris
P1. Leaders from Russia Germany, and Europe may meet around the
upcoming UN climate change conference in Paris.
P2. Australia kicks off climate rallies ahead of global talks.

Russia, Germany,
Europe, Australia,
Paris

0.94

2015-11-28 Paris
P1. Activists plan to join arms and form a “human chain” in Paris on
Sunday to urge action on global warming, in a muted rally after attacks
on the city.

UN, Paris 0.92

2015-11-29 Paris Protest in Paris, France: Around 4,500 activists had earlier linked hands in a peaceful protest
near the site of the deadliest of the attacks, pleading for leaders to curb global warming.

unsupervised learning approaches have been developed
to tackle this problem in different domains. Advanced
techniques which use a combination of sophisticated fea-
tures, such as topic related keywords, as input to sup-
port vector machines, LASSO, and multi-task learning
approaches [17, 22] have also been studied. Ramakr-
ishnan et al. [14] designed a comprehensive framework
(EMBERS) for predicting civil unrest events in different
locations, using a combination of machine learning mod-
els ingested with heterogeneous input sources ranging
from social media to satellite images. Laxman et al. [7]
designed a generative model for categorical event predic-
tion in streaming data by identifying frequent episodes.
A recent work [19] has studied a multi-modal transfer
learning method (FLORAL) to transfer knowledge from
a city where there is sufficient multi-modal data and la-
bels, to other cities and locations.

Precursor Discovery In the multiple instance
learning (MIL) paradigm [23, 9], labels are associated
with sets of instances commonly referred to as bags
or groups instead of individual instances. Individual
instance-level labels are unknown or missing. MIL turns
out to be a natural fit for the precursor mining problem
because the labels are only associated with the events
of interest but not the precursor documents in history.
Traditional MIL formulations make strong assumptions,
e.g., that the aggregation function over instance labels

is a noisy-OR function; i.e., the positive bags contain at
least one positive instance and the negative bags contain
only negative instances. A recent work [6] has developed
instance-level predictions from group labels (GICF)
which allows for general aggregation functions. Other
multiple instance learning approaches and applications
are surveyed in [1]. A nested multi-instance learning
(nMIL) framework [13] has been proposed to forecast
civil unrest events and detect precursor news articles
for these events. However, this approach does not
account for spatial dependencies and does not perform
satisfactorily in the presence of limited amount of data.

Representation Learning In practice, finding
good feature representations to model news articles
is not a trivial problem. Traditionally, the bag-of-
words representation allows for easy interpretation but
requires preprocessing and feature selection. Several
researchers have developed efficient and effective neural
network based representations for language models [3,
12]. Entity recognition has also been widely applied in
natural language processing tasks [10, 5]. Most societal
events are related to or even caused by known entities
such as persons, organizations, and geolocations. In
this paper, we combine document level embeddings with
recognized entity embeddings for better explanation of
precursor story lines and event forecasts.

The methods proposed in this paper can be viewed
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as complementary to the prior work discussed above,
casting the spatial event forecasting and precursor dis-
covery problems into a multi-instance learning frame-
work with a fusion penalty based on spatio-temporal
correlation graphs and augmented representations.

7 Conclusion

We presented STAPLE, a multi-task spatio-temporal
correlation graph model based on a two-level multi-
instance learning (MIL) framework for precursor mining
coupled with event forecasting. Multiple models for
cities are jointly learned together and proven to be
effective at both forecasting events and discovering
precursors. The richness of the identified precursor
events demonstrates that STAPLE will be a useful
tool for a better understanding of event happenings.
For future work, we plan to study narrative generation
and entity knowledge graph extraction from with multi-
source datasets.
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