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ABSTRACT
The emergence of evolving data privacy policies and regulations

has sparked a growing interest in the concept of “machine unlearn-

ing”, which involves enabling machine learning models to forget

specific data instances. In this paper, we specifically focus on edge
unlearning in Graph Neural Networks (GNNs), which entails train-

ing a new GNN model as if certain specified edges never existed in

the original training graph. Unlike conventional unlearning scenar-

ios where data samples are treated as independent entities, edges

in graphs exhibit correlation. Failing to carefully account for this

data dependency would result in the incomplete removal of the

requested data from the model. While retraining the model from

scratch by excluding the specific edges can eliminate their influ-

ence, this approach incurs a high computational cost. To overcome

this challenge, we introduce CEU, a Certified Edge Unlearning

framework. CEU expedites the unlearning process by updating the

parameters of the pre-trained GNN model in a single step, ensuring

that the update removes the influence of the removed edges from

the model. We formally prove that CEU offers a rigorous theoretical

guarantee under the assumption of convexity on the loss function.

Our empirical analysis further demonstrates the effectiveness and

efficiency of CEU for both linear and deep GNNs – it achieves

significant speedup gains compared to retraining and existing un-

learning methods while maintaining comparable model accuracy

to retraining from scratch.
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1 INTRODUCTION
Legislation such as the General Data Protection Regulation (GDPR)

[31], the California Consumer Privacy Act (CCPA) [27], and the

Personal Information Protection and Electronic Documents Act

(PIPEDA) [28] has introduced requirements for companies to honor

user requests for the removal of private data. This has sparked

discussions around the concept of the “right to be forgotten” [22],

which empowers users to have more control over their data by

requesting its deletion from learned models. When a company

has already utilized user data to train their machine learning (ML)

models, these models must be appropriately manipulated to reflect

data deletion requests.

In this paper, we study Graph Neural Networks (GNNs) as the

target model and edge removal as the unlearning request. To illus-

trate this scenario, let us consider an online social network platform

where users request the elimination of their sensitive social rela-

tions. The platform owner is legally bound to remove the edges

associated with these sensitive social relations from anyGNNmodel

trained on the graph containing those edges. This ensures that the

model no longer “remembers” those sensitive social relations.

Naively erasing edges from a GNN model by fully retraining can

be excessively time-consuming, particularly for complex GNNmod-

els trained on large graphs. As a result, recent efforts have focused

on developing efficient methods for exact unlearning [7, 10] as well

as approximate unlearning [9, 26] specifically tailored for GNNs.

In this paper, our emphasis is on approximate graph unlearning

methods that facilitate the removal of requested edges from the

model without retraining from scratch. Our approach is inspired by

the concept of influence function, which enables the estimation of

the impact of individual data samples on learning models [21]. To

prove that the resulting model has removed the information related

to the deleted edges, our goal is to provide a rigorously certified

guarantee [15, 16] of the statistical indistinguishability between the

retrained model and the unlearning model.

Despite the plethora of research on machine unlearning for non-

graph datasets (e.g., [3–5, 23]), none of these approaches can be

directly applied to GNNs due to the presence of data dependency

https://doi.org/10.1145/3580305.3599271
https://doi.org/10.1145/3580305.3599271
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within graphs. Failing to carefully account for this data dependency

would result in an incomplete removal of the requested data from

the model. While recent efforts have been made to develop exact

and approximate edge unlearning methods for GNNs [7, 9, 10],

exact unlearning methods suffer from potentially significant loss of

model accuracy [7, 10]. On the other hand, the existing approximate

unlearning methods either lack a certified guarantee [8] or are

limited to GNN models with specific structures [9].
1

Our contributions.WedesignCEU, a Certified EdgeUnlearning
algorithm that removes requested edges from GNNs without the

need for retraining while providing a provable guarantee of the

unlearning model. Our contributions are outlined as follows.

▶ Unlearning through influence analysis.We formulate the

unlearning problem as finding a closed-form update on the model

parameters. To achieve this, we introduce a novel influence function

that efficiently computes the necessary update, while also taking

into account the neighborhood of the removed edges. We address

several theoretical and practical challenges of deriving edge influ-

ence by providing an influence estimator that is computationally

and memory efficient.

▶ Certified unlearning. We undertake in-depth theoretical anal-

ysis and present non-trivial findings. We provide formal proofs

demonstrating thatCEU can deliver a rigorous (𝜖, 𝛿)-approximation

guarantee under the assumption of a strongly convex loss func-

tion. Additionally, we derive both worst-case and data-dependent

bounds for the statistical distance between the retrained model and

the model obtained through unlearning using CEU.

▶ Empirical analysis. Through extensive empirical study, we

showcase the efficiency and effectiveness of CEU for both linear

and deep GNN models. Specifically, for linear GNNs, we demon-

strate that CEU achieves effective unlearning with a remarkable

16.2-fold speedup compared to retraining from scratch. Notably,

our method outperforms the exact graph unlearning approach [7]

in terms of both model accuracy and unlearning efficiency, exhibit-

ing a 63% improvement in model accuracy and a 3.7-fold speedup.

Additionally, it surpasses the existing certified graph unlearning

method [9] in terms of unlearning efficiency, achieving a speedup

of at least two orders of magnitude. Moving on to deep GNNs, our

empirical results highlight the high efficiency of CEU, providing a

speedup of up to 5 times compared to retraining while maintain-

ing similar model accuracy. Furthermore, we quantitatively assess

the efficacy of unlearning by conducting a link membership infer-

ence attack [19] on unlearning models. We demonstrate that the

attack accuracy of inferring the removed edges from the unlearning

model is comparable to that from the retrained model, indicating

the successful removal of the targeted edges.

2 RELATEDWORK
Machine unlearning [2, 17, 25] refers to a process that aims to

remove the impact of a set of data samples in the training set from

a trained model. From the certainty of unlearning, the existing

1
Both theoretical analysis and algorithmic techniques of [9] are closely tied to linear

GNNs such as simple graph convolutions (SGC) and their generalized PageRank (GPR)

extensions.

machine unlearning methods can be divided into two categories:

exact unlearning and approximate unlearning.

Exact machine unlearning. In exact unlearning, a model is

naively retrained from scratch after removing certain data sam-

ples from the dataset. This is generally computationally expensive.

Several attempts have been made to make unlearning more effi-

cient than retraining from scratch. An earlier study converts ML

algorithms to statistical query (SQ) learning so that unlearning

only needs to retrain the summation of SQ learning [4]. The SISA
(sharded, isolated, sliced, and aggregated) approach [2] trains a

set of constituent models on disjoint data shards. Only the shards

affected by the unlearning requests and their constituent models

are retrained. Some recent works [7, 10] extend exact unlearning

to the graph setting. In particular, GraphEraser [7] adapts the SISA
approach to graph unlearning. It splits graphs into disjoint parti-

tions. Upon receiving an unlearning request, only the model on

the affected shards is retrained. However, as shown in our empiri-

cal studies later (Section 6), GraphEraser suffers from a significant

loss of model accuracy, as splitting the training graph into disjoint

partitions damages the original graph structure. GraphEditor [10]
designs an exact unlearning solution of linear GNNs. However, it

is restricted to the linear structure only. It also cannot deal with

efficient batch removal of a large number of edges.

Approximate machine unlearning. Approximate unlearning

relaxes the requirement for exact unlearning by requiring that the

removed data is statistically unlearned with the guarantee that the

unlearning model cannot be distinguished from an exact deletion

model [16], where the indistinguishability is defined in a similar

manner as differential privacy [12]. Certified unlearning can be

realized by adding noise either on the weights [14, 15, 25, 32, 39]

or on the loss function [16]. In the context of graph unlearning,

Chien et al. [9] provide the first certified GNN unlearning solution.

However, their approach is restricted to GNN models of certain

structures such as Simple Graph Convolution (SGC) and its gener-

alized PageRank (GPR). And their implementation cannot be easily

adapted to general GNNs. Furthermore, their approach cannot sup-

port batch edge removal. Our empirical results show that CEU is

much faster than [9] in batch edge unlearning, with a speed-up

of at least two orders of magnitude. Their follow-up work [26]

extends to a particular type of nonlinear GNN models based on

Graph Scattering Transform (GST). However, [26] considers node

unlearning not edge unlearning. On the other hand, the approxi-

mate edge unlearning solution proposed by Cheng et al. [8] cannot
provide any certified guarantee.

3 PROBLEM FORMULATION

Problem setup. Let G be a set of graphs. In this paper, we only

consider undirected graphs. Let Θ be the parameter space of GNN

models. A learning algorithmAL is a function that maps an instance

𝐺 (𝑉 , 𝐸) ∈ G to a parameter 𝜃 ∈ Θ. Let 𝜃OR be the parameters of

AL trained on𝐺 . Any user can submit an edge unlearning request

to remove specific edges from𝐺 . In practice, unlearning requests

are often submitted sequentially. For efficiency, we assume these

requests are processed in a batch. Let 𝐸UL denote the batch of edges

that are requested to be removed. As a response to these requests,



Certified Edge Unlearning for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

AL has to erase the impacts of 𝐸UL on AL and produce an unlearn-

ing model. A straightforward approach is to retrain the model on

𝐺 (𝑉 , 𝐸\𝐸UL) from scratch and obtain the model parameters 𝜃RE.

However, due to the high computational cost of retraining, an al-

ternative solution is to apply an unlearning process AUL that takes

𝐸UL and 𝜃OR as input and outputs an unlearning model.

Certified guarantee. Approximate unlearning requires some

format of guarantee that the information related to the deleted

data has been removed from the model. Intuitively, if the result

of unlearning is likely to be obtained by retraining, then the un-

learning algorithm has successfully eliminated the influence of the

removed data points from the model. Following this intuition, we

adapt the concept of certified removal [16, 25] to our setting to mea-

sure the difference between the retrained model and one obtained

by unlearning. Broadly speaking, certified removal defines the in-

distinguishability between the retrained model and the unlearning

model in a similar manner as (𝜖, 𝛿)-differential privacy [12]. In par-

ticular, it defines the notion of (𝜖, 𝛿)-approximate unlearning which
is formalized as follows.

Definition 1 ((𝜖, 𝛿)-ApproximateUnlearning). Given a learn-
ing algorithmAL and two constants 𝜖, 𝛿 > 0, an unlearning algorithm
AUL performs (𝜖, 𝛿)-certified unlearning for AL if

𝑃
(
AUL (𝐷, 𝑧,AL (𝐷))

)
≤ 𝑒𝜖𝑃

(
AL (𝐷\𝑧)

)
+ 𝛿, (1)

and

𝑃
(
AL (𝐷\𝑧)

)
≤ 𝑒𝜖𝑃

(
AUL (𝐷, 𝑧,AL (𝐷))

)
+ 𝛿, (2)

where 𝑧 is the sample to be removed.

Intuitively, Def. 1 guarantees that the unlearning model is “ap-

proximately” the same as the retrained model, where the differ-

ence between the unlearning and retrained model is bounded by

the parameters of 𝜖 and 𝛿 . Smaller 𝜖 and 𝛿 indicate that the un-

learning model is closer to the retrained model. Trivially, a (0, 0)-
approximate unlearning model is equivalent to the retrained model.

We adapt the notion (𝜖, 𝛿)-approximate unlearning to edge re-

moval, and formalize the edge unlearning problem as follows:

Definition 2 ((𝜖, 𝛿)-approximate Edge Unlearning). Given
a graph 𝐺 (𝑉 , 𝐸), a set of edges 𝐸UL ⊂ 𝐸 that are requested to be
removed from 𝐺 , a graph learning algorithm AL and its readout
function 𝑓 , then an edge unlearning algorithm AUL performs (𝜖, 𝛿)-
certified unlearning for AL if:

𝑃
(
AUL (𝐺, 𝐸UL,AL (𝐺))

)
≤ 𝑒𝜖𝑃

(
AL (𝐺UL)

)
+ 𝛿, (3)

and

𝑃
(
AL (𝐺UL)

)
≤ 𝑒𝜖𝑃

(
AUL (𝐺, 𝐸UL,AL (𝐺))

)
+ 𝛿, (4)

where 𝜖, 𝛿 > 0, and 𝐺UL = 𝐺 (𝑉 , 𝐸\𝐸UL).

While Def. 1 is defined for a single data sample, we extend it to

the removal of a set of samples (edges) to handle batch edge removal.

Our goal is to seek the unlearning mechanismAUL that can remove

multiple edges at once with (𝜖, 𝛿)-approximate guarantee while its

computational complexity is significantly cheaper than retraining.

Original graph

After edge removal

CEU

𝐸!": removed edges

GNN

𝑏 ∼ 𝒩(0, 𝜎!)
Random Noise

𝐼##!"

Original model 
Θ%$%

Retrained model 
Θ%%#

Unlearning model 
Θ%!" = Θ%$% +

&
'
𝐼##!"

𝐸!"

Figure 1: The framework of CEU. Orange lines indicate the
process of retraining and green lines indicate unlearning.

4 METHODOLOGY
Given a graph𝐺 (𝑉 , 𝐸) as input, we can find a model represented by

𝜃 that fits the data by minimizing an empirical loss. In this paper, we

consider cross-entropy loss [11] as our loss function. The original

model 𝜃OR is obtained by solving the following program:

𝜃OR = argmin

𝜃

1

|𝑉 |
∑︁
𝑣∈𝑉

L(𝜃 ; 𝑣, 𝐸) . (5)

Assume a set of edges 𝐸UL is deleted from 𝐺 and let the new

graph after the deletion be 𝐺UL = 𝐺 (𝑉 , 𝐸\𝐸UL), retraining the

model will obtain a new model parameter 𝜃RE on 𝐺UL:

𝜃RE = argmin

𝜃

1

|𝑉 |
∑︁
𝑣∈𝑉

L(𝜃 ; 𝑣, 𝐸\𝐸UL). (6)

A major difficulty, as expected, is that obtaining 𝜃RE is prohibi-

tively slow for complex networks and large datasets. To overcome

this challenge, we will identify a closed-form update 𝐼𝐸UL
to 𝜃OR:

𝜃UL ≈ 𝜃OR − 𝐼𝐸UL
, (7)

where 𝐼𝐸UL
has the same dimension as the learning model 𝜃OR.

Intuitively, 𝜃UL approximates the retraining. Such approximation,

however, may not be able to provide any unlearning guarantee, as

the direction of the gradient residual of 𝜃UL may still be able to leak

information about the removed edges.

Overview of CEU. We design CEU as a two-step process. In

Step 1, CEU adds the perturbation to the loss function, aiming to

hide the real gradient residual and provide the certified unlearning

guarantee. Let
˜𝜃OR be the parameters of the model trained with the

noisy loss function. In Step 2,CEU estimates the one-shot update on

the parameters
˜𝜃OR through influence analysis. Figure 1 illustrates

an overview of CEU. Next, we describe the details of the two steps.

4.1 Step 1: Adding Perturbation on Loss
Function

To enable unlearning with a certified guarantee, we follow the same

idea of certified data removal [16] and add a linear noise term to

the training loss, aiming to hide the real gradient residual. We use

L𝑏 to denote the loss function with noise formalized as follows:

L𝑏 = 𝐿(𝜃, 𝐸) + 𝜆

2

| |𝜃 | |2 + 𝑏⊺𝜃, (8)
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where𝑏 is drawn randomly from the Gaussian distributionN(0, 𝜎2).
The randomness in 𝑏 will mask any potential information leaked

by the estimated edge influence. The resulting perturbed learning

problem can be solved using standard convex optimization methods.

4.2 Step 2: Unlearning through Influence
Analysis

Intuitively, updating model parameters for unlearning can be in-

terpreted from the optimization perspective that the model forgets

𝐸UL by “reversing” the influence
˜𝜃UL of 𝐸UL from the model. The

challenge is how to estimate the influence of
˜𝜃UL on the model.

Influence functions [21] enable efficient approximation of the

effect of some particular training points on a model’s prediction.

Intuitively, the influence function computes the parameters after

the removal of 𝑧 by upweighting 𝑧 on the parameters with some

small 𝜁 :

ˆ𝜃𝜁 ,𝑧 = argmin

𝜃

1

𝑚

∑︁
𝑧𝑖≠𝑧

L(𝜃 ; 𝑧𝑖 ) + 𝜁L(𝜃 ; 𝑧), (9)

where𝑚 is the number of data points in the original dataset, and

𝜁 is a small constant. The influence function is not restricted to a

single point. We can define a set of points 𝑍 and compute
ˆ𝜃𝜁 ,𝑍 .

However, most of the existing influence functions cannot be

directly applied to the GNN setting, as removing one edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 )
from the graph can affect not only the prediction of 𝑣𝑖 and 𝑣 𝑗 but

also those of neighboring nodes of 𝑣𝑖 and 𝑣 𝑗 , due to the aggregation

function of GNN models. To address this challenge, we design a

new influence function for GNNs that take the neighborhood into

consideration when estimating the influence of the neighborhood

of removing an edge on model parameters.

In general, an ℓ-layer GNN aggregates the information of the

ℓ-hop neighborhood of each node. Thus removing an edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 )
will affect not only 𝑣𝑖 and 𝑣 𝑗 but also all nodes in the ℓ-hop neigh-

borhood of 𝑣𝑖 and 𝑣 𝑗 . To capture such aggregation effect in the

derivation of edge influence, first, we define the set of nodes (de-

noted as 𝑉𝑒 ) that will be affected by removing an edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 )
as: 𝑉𝑒 = N(𝑣𝑖 ) ∪ N (𝑣 𝑗 ) ∪ {𝑣𝑖 , 𝑣 𝑗 }, where N(𝑣) is the set of nodes
connected to 𝑣 in ℓ hops. Furthermore, we define the set of nodes

(denoted as 𝑉𝐸UL
) that will be affected by removing a set of edges

𝐸UL as 𝑉𝐸UL
=
⋃

𝑒∈𝐸UL
𝑉𝑒 .

To revert the influence of 𝐸UL on the target model, we compute

the new parameters 𝜃𝜁 ,𝐸UL
after the removal of 𝐸UL as follows:

𝜃𝜁 ,𝑉𝐸
UL

= argmin

𝜃

1

|𝑉 |
∑︁
𝑣∈𝑉

L𝑏 (𝜃 ; 𝑣, 𝐸) + 𝜁

( ∑︁
𝑣∈𝑉𝐸

UL

L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL)

−
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸)
)
. (10)

Eqn. (10) contains three terms. While the first term measures

the loss of the original model, the second and the third ones to-

gether compute the loss of the nodes affected by the removal of 𝐸UL.

Following this reasoning, Eqn. (10) is equivalent to Eqn. (6) when

𝜁 = 1

|𝑉 | , where |𝑉 | is the total number of nodes in the original

graph (the proof is included in our full version [38]). Following this

reasoning, instead of solving the problem in Eqn. (10), we formulate

the optimization problem as a closed-form update on the original

model
˜𝜃OR with the noisy loss function (by Step 1):

˜𝜃UL = ˜𝜃OR + 1

|𝑉 | 𝐼𝐸UL
, (11)

where 𝐼𝐸UL
is the influence of 𝐸UL on the target model with noisy

loss. By utilizing this formulation, we can describe changes in the

training graph structure by edge removal as a one-shot update on

model parameters.

In this paper, we take a second-order update strategy that utilizes

second-order derivatives to calculate the closed-form update 𝐼𝐸UL
.

Our second-order update result is present in the following theorem.

Theorem 3. Given the parameters 𝜃𝑂𝑅 obtained by AUL on a
graph𝐺 , and the loss functionL, assume thatL is twice-differentiable
and convex in 𝜃 , then the influence of a set of edges 𝐸𝑈𝐿 is:

𝐼𝐸
UL

= −𝐻 −1
˜𝜃
OR

(
∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

L𝑏 (𝜃OR; 𝑣, 𝐸\𝐸UL ) − ∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸 )
)
,

(12)

where 𝐻
˜𝜃OR

:= ∇2 1

|𝑉 |
∑

𝑣∈𝑉 L𝑏 ( ˜𝜃OR, 𝑣, 𝐸), and 𝐻−1
˜𝜃OR

is the inverse

Hessian of the loss at ˜𝜃OR.

The proof of Theorem 3 can be found in our full version [38].

Theorem 3 assumes the loss function is convex. Given the non-

convexity nature of GNN models, the Hessian matrix can be non-

invertible and thus there may not have a solution for the influence

estimation. To address this issue, we follow [21] and add a damping

term 𝜆1 to 𝐻 ˜𝜃OR
(i.e., 𝐻

˜𝜃OR
+ 𝜆1𝐼 ) if 𝐻 ˜𝜃OR

has negative eigenvalues,

where 𝜆1 is the same as the regularization rate 𝜆 in Eqn. (8). Our

empirical analysis (Sec. 6) will show this solution enables effective

unlearning in practice.

There are several practical and theoretical challenges in calcu-

lating the influence (Eqn. (12)). First, for large graphs, even storing

a Hessian matrix in memory is expensive: in our experiments, we

will show that Hessian matrices are huge, e.g. the Hessian matrix

on the CS dataset has a size of around 10
5 × 10

5
which would cost

50 GB memory. Second, even under the promise that the linear

system is feasible, computing the inverse of a matrix of huge size

is prohibitive. To address these two challenges, we design an algo-

rithm that approximates the inverse Hessian. Note that the existing

certified graph unlearning method [9] did not use any influence

estimator. Instead, it computes the exact inverse Hessian.

The starting point of our algorithm is a novel perspective that

solving the linear system can be thought of as finding a stationary
point of the quadratic function 𝑓 : 𝑓 (𝑥) = argmin𝑥

1

2
𝑥𝑇𝐵𝑥 − 𝑘𝑇 𝑥 ,

where 𝐵 = 𝐻̃𝜃OR , and

𝑘 = ∇𝜃
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 ( ˜𝜃𝑂𝑅 ; 𝑣, 𝐸\𝐸UL) − ∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

L𝑏 ( ˜𝜃𝑂𝑅 ; 𝑣, 𝐸). (13)

The random noise 𝑏 by Step 1 does not appear in 𝐵 due to the

second-order derivation. It does not appear in 𝑘 either because it

was contained in both terms in Eqn. (13) and thus was canceled. By

leveraging the stationary point, a convergence guarantee can be

established using gradient-descent-type algorithms [1].

We employ the implementation [24] that combines Hessian-

vector product (HVP) [29] and the conjugate gradient (CG) [35]

to approximate the inverse Hessian. CG exhibits promising com-

putational efficiency for minimizing quadratic functions [30]. It
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is well-known that, as long as some regularity conditions (e.g.,

the objective function is Lipschitz and bounded) are met, the CG

asymptotically converges to a stationary point. This stationary

point corresponds to a solution of 𝐼𝐸UL
(Eqn. (12)). Hence, we have

the following convergence guarantee of influence estimation.

Lemma 4 (Theorem 2.1 of [30]). The CG method generates a
sequence of iterates {𝑥𝑡 }𝑡≥1 such that lim𝑡→+∞ 𝑓 (𝑥𝑡 ) = 0. In addi-
tion, the per-iteration time complexity is 𝑂 (|𝑥 |) where |𝑥 | denotes the
dimension of 𝑥 .

We note, however, that an appealing feature of Eqn. (12) is that

it does not need to find a solution with an exact-zero gradient. This

enables us to terminate CG early by monitoring the magnitude of

the gradients. Our empirical study also shows that CG can get a

good approximation in a small number of iterations.

Besides time efficiency, we have the following lemma showing

that the CG method is memory-efficient.

Lemma 5. The CG method can be implemented using𝑂 (|𝜃 |) mem-
ory.

The proof of Lemma 5 can be found in our full version [38].

5 CERTIFIED UNLEARNING GUARANTEE
As the unlearning model by CEU approximates the retrained model,

ideally it should provide the theoretical guarantee that the unlearn-

ing model is statistically indistinguishable from the retrained one.

Next, we derive conditions under which the second-order update

by CEU can provide the (𝜖, 𝛿)-approximate unlearning guarantee.

To construct theoretical guarantees for our approach, we make the

following assumptions on the GNN models.

Assumption 6. For the given GNN model and its loss function 𝐿:
(1) 𝐿 is a strictly convex loss function that is twice differentiable; (2)
| |∇𝐿 | |2 ≤ 𝑐1; (3) ∇2𝐿 is 𝛾1-Lipschitz; (4) ∇𝐿 is 𝛾2-Lipschitz; and (5)
the node features 𝑥𝑣 is bounded: | |𝑥𝑣 | |2 ≤ 1, ∀𝑣 ∈ 𝑉 . Here 𝑐1, 𝛾1, 𝛾2
are positive constants.

These assumptions can be satisfied by a wide range of GNNs such

as Simple Graph Convolution (SGC) [6, 37] and Graph Linear Net-

work (GLN) [36] which can achieve the comparable performance

compared with deep GNNs [13, 36, 37]. It is important to note that,

although our theoretical analysis relies on the assumption of strictly

convex loss function, our algorithmic techniques are generic and

can be applied to various GNN models, including non-convex ones.

We will show that CEU can achieve notable empirical performance

on both linear and deep GNNs (Section 6).

Following the state-of-the-art certified removal work [16], we

utilize the gradient residual | |∇L||2 for the proof of certified guar-

antee. Intuitively, for strongly convex loss functions, the gradient

residual is zero as the optimum is unique. Hence, the norm of the

gradient residual | |∇L||2 can reflect the distance between the re-

trained and the unlearning models. Based on this,CEU can establish

the (𝜖, 𝛿)-approximation guarantee by following Theorem 7.

Theorem 7 (Theorem 3 from [16]). Let AL be the learning
algorithm that returns the unique optimum of the lossL𝑏 and letAUL

be the unlearning mechanism. Suppose that | |∇L𝑏 | |2 ≤ 𝜖′ for some
computable bound 𝜖′ > 0. If 𝑏 ∼ N(0, 𝑐𝜖′/𝜖)𝑑 with some constants

𝑐, 𝜖 > 0, where 𝑑 is the parameter dimension, then AUL provides
(𝜖, 𝛿)-approximation guarantee for AL, where 𝛿 = 1.5𝑒−𝑐

2/2.

Intuitively, Theorem 7 requires the gradient residual norm | |∇L𝑏 | |2
to be bounded appropriately in order to provide the approximation

guarantee. Thus, our theoretical analysis mainly focuses on finding

the bound of | |∇L𝑏 | |2. First, we present the worst-case bound of

| |∇L𝑏 | |2 in Theorem 8.

Theorem 8 (Worst-case Bound). Assume Assumption 6 holds.
Then we have the following worst-case bound of | |∇L𝑏 | |2:

| |∇L𝑏 ( ˜𝜃𝑈𝐿, 𝐸\𝐸UL) | |2 ≤
𝛾1𝛾

2

2
𝑐2
1

𝜆4 |𝑉 |

( ∑︁
𝑣∈𝐸UL

𝑛𝑣

)
2

, (14)

where 𝑛𝑣 is the number of neighbors of node 𝑣 , 𝜆 is the regularization
rate (Eqn. (8)), and |𝑉 | is the number of nodes in the training graph.

The proof of Theorem 8 is provided in our full version [38].

As
1

𝜆4
in Theorem 8 can be large, the worst-case bound can be

impractically loose. Therefore, next, we derive the data-dependent
bound on | |∇L𝑏 | |2 in Theorem 9.

Theorem 9 (Data-dependent Bound). Suppose Assumption 6
holds. Then we have the following data-dependent bound of | |∇L𝑏 | |2:

| |∇L𝑏 ( ˜𝜃UL, 𝐸\𝐸UL) | |2 ≤ 𝛾1
1

|𝑉 |2
| |𝐻̃−1

𝜃OR
Δ| |2

2
, (15)

where

Δ = ∇𝜃
∑︁

𝑣∈𝑉𝐸
UL

L( ˜𝜃OR; 𝑣, 𝐸) − ∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

L( ˜𝜃OR; 𝑣, 𝐸\𝐸UL) .

The proof of Theorem 9 can be found in our full version [38].

The data-dependent bound can be computed efficiently by using the

influence estimator (Sec. 4.2). We will show that the data-dependent

bound is much tighter than the worst-case bound in Section 6.

6 EXPERIMENTS
In this section, we empirically verify the efficiency and effectiveness

of CEU. The code and datasets are publicly available
2
.

6.1 Experimental Setup
All experiments are executed on a GPU server with NVIDIA A100

(40G). All the algorithms are implemented in Python with PyTorch.

Each experiment is repeated 10 times and the average is reported.

Datasets.Weuse three datasets, namelyCora [33],Citeseer [41],
andCS [34] datasets, that are popularly used for performance evalu-

ation of GNNs [34, 42]. The statistical information of these datasets

can be found in Appendix A.

GNNmodels.We consider two types of GNNmodels: (1) Linear
models: We consider a simplified GCN model that contains only

one layer and a softmax function (without normalization). (2) Deep
models: We consider three representative GNN models, namely

GCN [20],GraphSAGE [18], andGIN [40]. For these GNNmodels,

we consider various network complexity (up to four hidden layers)

in the experiments, with the same number of neurons as 32 at each

layer respectively. All GNNmodels are trained for 1,000 epochs with

2
https://github.com/kunwu522/certified_edge_unlearning

https://github.com/kunwu522/certified_edge_unlearning
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an early stop condition that the validation loss does not decrease

for 20 epochs. We randomly split each graph into a training set

(70%), a validation set (10%), and a test set (20%). More details of

the setup of model parameters can be found in Appendix A.

Edges for removal.We randomly pick 𝑘 = {200, 400, 600, 800,

1,000}) edges from Cora and CiteSeer datasets, and 𝑘 = {2,000, 4,000,

6,000, 8,000, 10,000}) edges from CS dataset for removal. We pick

more edges from the CS dataset as its number of edges is orders of

magnitude higher than the other two datasets (Table 4).

Metrics. We evaluate the performance of CEU in terms of ef-
ficiency, efficacy, and model accuracy: (1) Unlearning efficiency
is measured as the running time of CEU; (2) Target model accu-
racy is measured as the accuracy of node classification, i.e., the

percentage of nodes that are correctly classified by the model; (3)

Unlearning efficacy: We utilize StealLink [19], a SOTA edge mem-

bership inference attack, to empirically evaluate the extent to which

the model has forgotten the removed edges.
3
StealLink predicts

whether particular edges exist in the training graph. We measure

the unlearning efficacy as AUC of StealLink’s inference of whether

the removed edges were present in the original graph. Intuitively,

a higher AUC indicates lower unlearning efficacy. AUC close to 0.5

indicates that the model has removed the requested edges.

Noise setup. We follow the same setting of [9] and set 𝜆 = 0.01

and 𝜎 = 0.1 (Eqn. (8)). We use the same 𝜖 (𝜖 = 0.1 - 10) as in [9].

Baselines.We consider three baselines of exact and approximate

GNN unlearning for comparison with CEU.

• Exact unlearning: We consider GraphEraser [2], the SOTA ex-

act edge unlearning method. GraphEraser has two partitioning

strategies denoted as balanced LPA (BLPA) and balanced em-
bedding 𝑘-means (BEKM). We consider both BLPA and BEKM

as the baseline methods as these two methods exhibit varying

performance in different settings.

• Uncertified unlearning (UEU): We estimate the influence of

the removed edges on the original model (i.e., no noise on the

loss function), and apply similar influence analysis (Section 4.2)

to derive the one-shot update on model parameters. More details

of UEU can be found in our full version [38].

• Certified unlearning:We consider Certified Graph Unlearning

(CGU) [9] as a baseline.
4

Two retraining settings.AsCEU adds noise to the loss function

of the target model, we consider two different retraining settings

denoted as “Retrain” and “R+N” respectively.

6.2 Tightness of Bounds
The tightness of both worst-case and data-dependent bounds of the

gradient residual norm determines the strictness of the certified

guarantee. To evaluate the tightness of both bounds, we consider the

1-layer GCNmodel and measure the real gradient residual norm val-

ues (as the ground truth) as well as the two bounds. Figure 2 reports

the value of the two bounds as a function of the number of removed

edges. We have two main observations. First, as expected, the worst-

case bound is much looser than the data-dependent bound. It can be

3
Implementation of StealLink: https://github.com/xinleihe/link_stealing_attack

4
Implementation of CGU [9]: https://github.com/thupchnsky/sgc_unlearn
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Figure 2: Tightness of bounds (GRN: Gradient residual norm).

Table 1:Model accuracy of CEU, retraining (Retrain andR+N),
and baselines (BLPA, BEKM, UEU) (Linear GCN, CS dataset).

Type Method

Number of removed edges

0 2K 4K 6K 8K 10K

Retrain

Retrain 0.93 0.93 0.93 0.93 0.93 0.93

R+N 0.91 0.91 0.91 0.91 0.90 0.90

Unlearn

BLPA 0.84 0.69 0.80 0.84 0.84 0.68

BEKM 0.64 0.80 0.56 0.83 0.77 0.67

UEU 0.93 0.93 0.93 0.93 0.93 0.93

CEU 0.91 0.91 0.91 0.91 0.90 0.90

several orders of magnitude larger than the data-dependent bound.

The looseness in the bound comes from
1

𝜆4
in the bound. Second,

the data-dependent bound is close to the ground-truth gradient

residual norm, regardless of the growth in the number of removed

edges. Given the tightness of the data-dependent bounds, CEU is

expected to handle batch removal of a large number of edges.

6.3 Performance of Linear GCN Models
In this section, we only consider linear GCN models (i.e., 1-layer

GCN model), and evaluate the performance of CEU for this model

on three graph datasets in terms of model accuracy, unlearning

efficiency, and unlearning efficacy. The results of UEU show the

impact of noise on model performance compared with CEU.
Besides these results, we have additional results of the following

studies: (1) the impacts of types of removed edges on unlearning

performance; (2) the performance of sequential unlearning. These

results can be found in our full version [38].

Model accuracy. Table 1 reports the results of GCN model ac-

curacy on the CS dataset. The results on Cora and Citeseer datasets

are similar and can be found in Appendix C.1. We have the follow-

ing observations. First, the model accuracy obtained by CEU stays

very close to that of the retrained model, regardless of the number

of removed edges. The difference in model accuracy between the

retrained and unlearning models remains negligible (in the range

of [0.01%, 0.11%]). Second, in terms of comparison with both exact

unlearning baselines (BEKM, BLPA), the model accuracy by CEU is

significantly higher than these two baselines in all the settings. For

example, when removing 4,000 edges, both BEKM and BLPA only

https://github.com/xinleihe/link_stealing_attack
https://github.com/thupchnsky/sgc_unlearn
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Figure 3: Time performance of CEU, retraining (Retrain and R+U), and baselines (BLPA, BEKM, UEU) for linear GCN model.

Table 2: Unlearning efficacy of CEU, retraining, and UEU
(Linear GCN, Cora dataset).

|𝐸UL | Original Retrain UEU R+N CEU

200 0.930 0.577 0.572 0.533 0.535

400 0.936 0.582 0.580 0.541 0.543

600 0.935 0.582 0.580 0.547 0.547

800 0.936 0.589 0.585 0.549 0.552

1,000 0.935 0.586 0.592 0.559 0.553

can deliver model accuracy of around 0.56 and 0.80, while CEU can

deliver a model accuracy of around 0.91 (63% and 14% improve-

ment). This demonstrates the weakness of the exact unlearning

through graph partitioning - breaking the graph structure can bring

non-negligible model accuracy loss. Third, regarding the compari-

son with the approximate unlearning baseline (UEU), CEU has very

similar model accuracy, although UEU does not add perturbation

to the model loss function. This demonstrates that CEU addresses

the trade-off between privacy and model accuracy—it can deliver a

provable unlearning guarantee while requiring negligible sacrifice

on model accuracy.

Unlearning efficiency.We report the time performance results

of CEU in Figure 3. Our observations are followings. First, CEU is

significantly faster than retraining from scratch. It speeds up by

11.4×, 6.4×, and 16.2× for Cora, CiteSeer, and CS datasets, respec-

tively. Second, CEU is much faster than both BEKM and BLPA base-

lines, especially when training large graphs. For example, CEU is

3.7× faster than both BLPA and BEKM on the CS dataset when 4,000

edges and 10,000 edges were removed respectively (Figure 3 (c)).

This demonstrates the advantage of the approximate unlearning

methods. Third, for both approximate unlearning methods, CEU
has comparable time performance as UEU although UEU is slightly

faster than CEU.
Unlearning efficacy. Table 2 reports the attack performance

of attack accuracy of the removed edges 𝐸UL against the original

model, retraining model (with and without noise), UEU, and CEU
on the Cora dataset. We observe the following phenomena. First,

StealLink is highly effective to predict the existence of 𝐸UL in the

original graph (“Original” column), as the AUC of the attack against

the original model is higher than 0.9 (much higher than 0.5). Second,

the AUC of the attack is noticeably reduced to close to 0.5 for both

retrained and unlearning models (“R+N” and “CEU” columns). This

demonstrates that CEU has a similar ability to make the model

forget the removed edges as retraining. Third, the AUC of both

retraining and learning with noise (“R+N” and “CEU” columns) is

lower than that without noise (“Retrain” and “UEU” columns). This

demonstrates that the perturbation added to the loss function helps

to reduce the privacy vulnerability of the removed edges.

Effects of 𝜖 on model accuracy.We study the effect of various

𝜖 values (for (𝜖, 𝛿)-unlearning)) on unlearning performance. The

noise 𝑏 is determined by using the data-dependency bound (The-

orem 9) as 𝜖′ and 𝜖 together. Figure 4 reports the model accuracy

with various 𝜖 values. We observe that, unsurprisingly, the model

accuracy degrades when 𝜖 grows (i.e., more noise is added). For

instance, when 𝜖 changes from 0.1 to 10, we witness the model

accuracy drops from 0.925 to 0.9 when removing 2,000 edges from

the CS dataset (Figure 4 (c)). Such model accuracy drop is more

significant on Cora and Citeseer datasets. The drop in model accu-

racy meets our expectation as higher 𝜖 allows a larger statistical

distance between the retrained model and the unlearning model,

and thus lowers the accuracy of the unlearning model.

Comparison with CGU [9].As the approach presented in [9] is
specifically designed for Simple Graph Convolutional (SGC) models,

we apply both CEU and CGU to the SGC model to ensure a fair

comparison of their performance. Figure 5 (a) reports the model

accuracy of the retrained model and both CGU and CEU on the

Cora dataset. The results on Citeseer and CS datasets are similar

and can be found in the full version [38]. We observe that the model

accuracy of CEU stays close to CGU in all the settings. On the

other hand, as shown in Figure 5 (b), CEU is much faster than CGU,

with a speed-up by at least two orders of magnitude. Indeed, the

speed-up is more compelling when more edges are removed. This

shows the advantage of CEU for batch edge removal to CGU.

Besides model accuracy and unlearning efficiency, we also eval-

uated the unlearning efficacy of both CEU and CGU, and observed
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Figure 4: Effect of unlearning parameter 𝜖 on model accuracy by CEU (Linear GCN model).
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Figure 5: CGU [9] vs. CEU (SGC model, Cora dataset).

that CGU and CEU have comparable unlearning efficacy. Due to

the limited space, we include the results in the full version [38].

6.4 Performance of Deep GNN Models
So far, we only consider the linear GCN model that meets Assump-

tion 6. Next, we evaluate the performance of CEU on deep GNN

models that do not meet Assumption 6. We consider GCN, Graph-

SAGE, and GIN models of various complexity (2-layer, 3-layer, and

4-layer) with ReLU as the activation function. We do not compare

with the existing certified edge unlearning method [9] as it cannot

be used on non-linear GNN models. Hence, we only compare CEU
with the two baselines of exact edge unlearning (BLPA and BEKM).

Model accuracy. Figure 6 reports the model accuracy of the

retrained model and CEU for the GCN model of various complexity.

The results of GraphSAGE and GIN as well as the other two datasets

are similar; they can be found in Appendix C.2. We observe two

phenomena. First, although the model accuracy degrades for both

retrained and unlearning GNN models of higher complexity, the

model accuracy of the unlearning model remains close to that of

the retrained model. The largest difference between model accuracy

is only around 1.4% (Figure 6 (c)). Second, CEU outperforms two

baselines (BLPA and BEKM) in terms of model accuracy for all

the settings. For example, the model accuracy of CEU on the 4-

layer GCN is 30% higher than BEKM when removing 10,000 edges

(Figure 6 (c)). This demonstrates the advantage of CEU to the exact

graph unlearning. We also observe that the model accuracy of both

retrained and unlearning models is insensitive to the number of

edges. This is because the removed edges only takes a small portion

(no more than 6%) of the original data.

Unlearning efficiency. Figure 7 shows the running time of

retraining and CEU on GCN models with CS dataset. The time per-

formance results of the other two datasets are included in Appendix

C.2. We observe that, although the running time for both retraining

and CEU grows with the increase in the complexity of GNNmodels,

CEU is always significantly faster than retraining in all the settings,

with the speedup factor as large as 5.2×. Furthermore, CEU is domi-

nantly faster than the two baselines of exact unlearning (BLPA and

BEKM), with a speedup as large as one-order magnitude.

Unlearning efficacy. Table 3 presents the attack performance

of StealLink [19] of inferring the removed edges 𝐸UL against the

original model, the retrained model, the unlearning model by CEU,
as well as by two baselines of exact unlearning (BLPA and BEKM)

for GCN model on CS dataset. The results of the other settings can

be found in Appendix C.2.We observe that, while StealLink is highly

effective in predicting the presence of 𝐸UL from the original model

(“Orig.” column), its attack accuracy is significantly reduced to close

to 0.5 when being launched against all the retraining/unlearning

models. This indicates that CEU exhibits a similar capability as

either retraining or exact unlearning to make deep GNN models

forget the removed edges.

7 CONCLUSION
In this paper, we design CEU an efficient edge unlearning method

that handles batch edge removal from GNNs. We prove that CEU
can provide the theoretical guarantee of unlearning for GNNmodels

under certain assumptions of convexity of the model’s loss func-

tion. Our extensive set of experiments demonstrates that CEU can

achieve significant speedup gains over retraining while delivering

similar model accuracy for both linear and deep GNN models.

There are several research directions for future work. An inter-

esting direction will be extending to handle the removal of nodes

from graphs. It is seemly straightforward that node unlearning can

be easily adapted from edge unlearning, as removing a node 𝑣 from

a graph is equivalent to removing all the edges that connect with 𝑣

in the graph. However, node unlearning indeed is more challenging

than edge unlearning, as removing a node entirely from the model



Certified Edge Unlearning for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Retrain CEU BLPA BEKM

0 2000 4000 6000 8000 10000
Number of unlearned edges

0.82

0.84

0.86

0.88

0.90

0.92

M
od

el
 a

cc
ur

ac
y

(a) 2-layer GCN
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Figure 6: Model accuracy of CEU on deep GNN models (GCN, CS dataset).
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Figure 7: Time performance of retraining and CEU on deep GNN models (GCN, CS dataset).

Table 3: Unlearning efficacy of CEU and baselines on deep GNN models (GCN, CS dataset).

|𝐸UL |
2-layer 3-layer 4-layer

Orig. Retrain CEU BLPA BEKM Orig. Retrain CEU BLPA BEKM Orig. Retrain CEU BLPA BEKM

2K 0.960 0.547 0.547 0.502 0.503 0.957 0.543 0.547 0.495 0.486 0.955 0.543 0.551 0.503 0.510

4K 0.960 0.545 0.552 0.503 0.499 0.956 0.545 0.549 0.495 0.506 0.956 0.547 0.553 0.501 0.501

6K 0.959 0.550 0.555 0.498 0.504 0.957 0.544 0.552 0.499 0.502 0.955 0.547 0.550 0.503 0.492

8K 0.959 0.553 0.554 0.502 0.497 0.956 0.549 0.550 0.501 0.500 0.956 0.547 0.553 0.502 0.507

10K 0.960 0.550 0.554 0.500 0.500 0.956 0.551 0.554 0.500 0.505 0.956 0.549 0.554 0.500 0.502

requires removing not only the edges connected with the node but

also its features and labels. We will explore how to design efficient

and certified node learning methods for the future work. Another

interesting direction is to add additional constraints on unlearning.

A possible constraint is the unlearning capacity, i.e., the maximum

number of edges that can be deleted while still ensuring good model

accuracy.
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Table 4: Description of datasets

Dataset #. Features #. Nodes #. Edges #. Classes

Cora 1,433 2,708 5,429 7

CiteSeer 3,703 3,327 4,552 6

CS 6,805 18,333 163,788 15

APPENDIX
In this appendix, we describe the detailed experimental setup, the

complete proof of our theorems and lemmas, and additional exper-

imental results. Our code is available at https://github.com/kun

wu522/certif ied_edge_unlearning. Please note that the code is

subjected to reorganization to improve readability.

A MORE DETAILS OF EXPERIMENTAL SETUP
Datasets. Table 4 summarizes the statistical information of the

three graph datasets (Cora, Citeseer, and CS) we used in the experi-

ments.

Model setup. To ensure a fair comparison between the retrained

and unlearned models, we use the same model size (i.e., the same

number of layers and number of neurons) for both retraining and

unlearned models. All GNN models are trained with a learning

rate of 0.001. We train the models by 1,000 epochs, with the early-

stopping condition so that the validation loss does not decrease for

20 epochs.

B COMPLETE PROOF OF THEOREMS AND
LEMMAS

B.1 Proof of 𝜁 = 1

|𝑉 | in Eqn. (10)
In this section, we prove the statement that Eqn. (10) is equivalent

to retraining if 𝜁 = 1

|𝑉 | .

Proof. Recall Eqn. (10) as defined below:

𝜃𝜁 ,𝑉𝐸
UL

= argmin

𝜃

1

|𝑉 |
∑︁
𝑣∈𝑉

L𝑏 (𝜃 ; 𝑣, 𝐸) + 𝜁

( ∑︁
𝑣∈𝑉𝐸

UL

L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL)

−
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸)
)
.

The first term
1

|𝑉 |
∑

𝑣∈𝑉 L𝑏 (𝜃 ; 𝑣, 𝐸) can be split in the following

way:

1

|𝑉 |
∑︁
𝑣∈𝑉

L𝑏 (𝜃 ; 𝑣, 𝐸)

=
1

|𝑉 |
∑︁

𝑣∈𝑉 \𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸) +
1

|𝑉 |
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸) (16)

By seting 𝜁 = 1

|𝑉 | and plugging Eqn. (16) into Eqn. (10), we have

the following:

𝜃𝜁 ,𝑉𝐸
UL

= argmin

1

|𝑉 |
∑︁

𝑣∈𝑉 \𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸)

+ 1

|𝑉 |
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL) .

As 𝑣 ∈ 𝑉 \𝑉𝐸UL
will not be affected by 𝐸UL, we can use 𝐸\𝐸UL to

replace 𝐸 as

𝜃𝜁 ,𝑉𝐸
UL

= argmin

1

|𝑉 |
∑︁

𝑣∈𝑉 \𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL)

+ 1

|𝑉 |
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL)

= argmin

1

|𝑉 |
∑︁
𝑣∈𝑉

L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL) .

Then the statement follows. □

B.2 Proof of Theorem 3
Proof. For simplicity, we first define

𝑅𝑏 (𝜃,𝑉 , 𝐸) =
∑︁
𝑣∈𝑉

L𝑏 (𝜃, 𝑣, 𝐸).

Then, we formulate a GNN learning process as

˜𝜃OR = argmin

𝜃

1

|𝑉 |𝑅𝑏 (𝜃,𝑉 , 𝐸). (17)

Since removing edges can be considered as perturbing the input,

we introduce Eqn. 10,

˜𝜃𝜁 = argmin

𝜃

1

|𝑉 |
∑︁
𝑣∈𝑉

L𝑏 (𝜃 ; 𝑣, 𝐸) + 𝜁
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL)

− 𝜁
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃 ; 𝑣, 𝐸)

= argmin

𝜃

1

|𝑉 |𝑅𝑏 (𝜃,𝑉 , 𝐸) + 𝜁𝑅𝑏 (𝜃,𝑉𝐸UL
, 𝐸\𝐸UL) − 𝜁𝑅𝑏 (𝜃,𝑉𝐸UL

, 𝐸).
(18)

We note a necessary condition is that the gradient of Eqn. 18 at

˜𝜃𝜁 is zero. Then, we have

0 =
1

|𝑉 | ∇𝜃𝑅(
˜𝜃𝜁 ,𝑉 , 𝐸)+𝜁∇𝜃𝑅𝑏 ( ˜𝜃𝜁 ,𝑉𝐸UL

, 𝐸\𝐸UL)−𝜁∇𝜃𝑅( ˜𝜃𝜁 ,𝑉𝐸UL
, 𝐸) .

Next, we apply Taylor series at 𝜃OR and we get

0 ≈ 1

|𝑉 | ∇𝜃𝑅𝑏 (𝜃OR,𝑉 , 𝐸) + 𝜁∇𝜃𝑅𝑏 (𝜃OR,𝑉𝐸UL
, 𝐸\𝐸UL)

−𝜁∇𝜃𝑅𝑏 (𝜃OR,𝑉𝐸UL
, 𝐸) +

[
1

|𝑉 | ∇
2

𝜃
𝑅(𝜃OR,𝑉 , 𝐸)

+𝜁∇2

𝜃
𝑅(𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL) − 𝜁∇2

𝜃
𝑅(𝜃OR,𝑉𝐸UL

, 𝐸)
]
(𝜃𝜁 − 𝜃OR),

(19)

where we have dropped 𝑜 ( ˜𝜃OR − ˜𝜃𝜁 ) for approximation. Then Eqn.

(19) is a linear system of 𝐸UL, the influence of 𝐸UL. Since
˜𝜃OR is the

minimum of Eqn. (17), we have
1

|𝑉 | ∇𝑅𝑏 ( ˜𝜃OR,𝑉 , 𝐸) = 0. As 𝜁 is a

small value, we drop the two 𝑜 (𝜁 ) terms and have the following:

1

|𝑉 | ∇
2

𝜃
𝑅𝑏 ( ˜𝜃OR,𝑉 , 𝐸) ( ˜𝜃𝜁 − ˜𝜃OR)

+ 𝜁

(
∇𝜃𝑅( ˜𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL) − ∇𝜃𝑅( ˜𝜃OR,𝑉𝐸UL
, 𝐸)

)
≈ 0.

https://github.com/kunwu522/certified_edge_unlearning
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Suppose Eqn. (17) is convex, then

˜𝜃𝜁 − ˜𝜃OR ≈ − 1

|𝑉 | ∇
2

𝜃
𝑅𝑏 ( ˜𝜃OR,𝑉 , 𝐸)−1

×
(
∇𝜃𝑅𝑏 ( ˜𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL) − ∇𝜃𝑅( ˜𝜃OR,𝑉𝐸UL
, 𝐸)

)
𝜁

We have the following:

𝐼𝐸UL

:=
𝑑 ( ˜𝜃𝜁 − ˜𝜃OR)

𝑑𝜁

���
𝜁=0

= −𝐻̃−1
˜𝜃OR

(
∇𝜃𝑅𝑏 ( ˜𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL) − ∇𝜃𝑅𝑏 ( ˜𝜃OR,𝑉𝐸UL
, 𝐸)

)
where 𝐻̃

˜𝜃OR
:= ∇2 1

|𝑉 |
∑

𝑣∈𝑉 𝐿( ˜𝜃OR, 𝑣, 𝐸). □

B.3 Proof of Lemma 5
Proof. Recall that a key step of CG update is calculating the

gradient of 𝑓 (𝑥) as

∇𝑓 (𝑥) = 𝐻̃
˜𝜃OR

𝑥−
(
∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

L𝑏 (𝜃OR; 𝑣, 𝐸\𝐸UL)−∇𝜃
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 (𝜃OR; 𝑣, 𝐸)
)
.

As 𝐻̃
˜𝜃OR

∈ R |𝜃 |× |𝜃 | , we can not explicitly compute 𝐻̃
˜𝜃OR

. Instead,

we utilize Hessian-vector product [29] to approximately calculate

𝐻̃
˜𝜃OR

𝑥 for some very small step size 𝑟 > 0 by

𝐻̃
˜𝜃OR

𝑥 ≈ 𝑔( ˜𝜃OR + 𝑟𝑥) − 𝑔( ˜𝜃OR)
𝑟

𝑔(𝜃 ) := ∇𝜃
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL) − ∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸) .

As the memory cost of evaluating the function value of 𝑔(·) is
𝑂 ( |𝜃 |), Lemma 5 follows. □

B.4 Proof of Theorem 8
Proof. Let 𝐺 (𝜃 ) = ∇𝜃 1

|𝑉 |
∑

𝑣∈𝑉 L𝑏 (𝜃 ; 𝑣, 𝐸\𝐸UL), by Taylor’s

Theorem, there exists some 𝜂 ∈ [0, 1] such that,

𝐺 ( ˜𝜃UL) ≈ 𝐺 ( ˜𝜃OR + 1

|𝑉 | 𝐼𝐸UL
)

= 𝐺 ( ˜𝜃OR) + ∇𝐺 ( ˜𝜃OR + 𝜂

|𝑉 | 𝐼𝐸UL
) 1

|𝑉 | 𝐼𝐸UL
.

Since ∇𝐺 ( ˜𝜃OR +
𝜂

|𝑉 | 𝐼𝐸UL
) is the Hessian of L𝑏 calculated at 𝜃𝜂 =

˜𝜃OR + 𝜂

|𝑉 | 𝐼𝐸UL
, we denote ∇𝐺 as 𝐻−1

𝜂 and let

Δ = ∇𝜃
∑

𝑣∈𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸) −∇𝜃
∑

𝑣∈𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL).
Thus,

𝐺 ( ˜𝜃UL) = 𝐺 ( ˜𝜃OR) + 𝐻𝜃𝜂

1

|𝑉 | 𝐼𝐸UL

= 𝐺 ( ˜𝜃OR) +
1

|𝑉 |𝐻𝜃𝜂 𝐻̃
−1
𝜃OR

Δ

= (𝐺 ( ˜𝜃OR) +
1

|𝑉 |Δ) + ( 1

|𝑉 |𝐻𝜃𝜂 𝐻̃
−1
𝜃OR

Δ − 1

|𝑉 |Δ) .

Since 𝐺 ( ˜𝜃OR) = 1

|𝑉 | ∇
∑

𝑣∈𝑉 \𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL)
+ 1

|𝑉 | ∇
∑

𝑣∈𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL), let us first look at 𝐺 ( ˜𝜃OR) +

1

|𝑉 | Δ as

𝐺 ( ˜𝜃OR) +
1

|𝑉 |Δ =
1

|𝑉 | ∇
∑︁

𝑣∈𝑉 \𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL)

+ 1

|𝑉 | ∇
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸).

Since 𝑣 ∈ 𝑉 \𝑉𝐸UL
is not in the set of infected nodes, therefore,∑

𝑣∈𝑉 \𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL) =
∑

𝑣∈𝑉 \𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸), thenwe
have

𝐺 ( ˜𝜃OR) +
1

|𝑉 |Δ = ∇𝜃
1

|𝑉 |
∑︁
𝑣∈𝑉

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸) = 0.

Back to 𝐺 ( ˜𝜃UL), we have

𝐺 ( ˜𝜃UL) =
1

|𝑉 |𝐻𝜃𝜂 𝐻̃
−1
𝜃OR

Δ − 1

|𝑉 |Δ

=
1

|𝑉 |𝐻𝜃𝜂 𝐻̃
−1
𝜃OR

Δ − 1

|𝑉 | 𝐻̃𝜃OR𝐻̃
−1
𝜃OR

Δ

=
1

|𝑉 | (𝐻𝜃𝜂 − 𝐻̃𝜃OR )𝐻̃
−1
𝜃OR

Δ. (20)

Next,

| |𝐺 ( ˜𝜃UL) | |2 = | | 1

|𝑉 | (𝐻𝜃𝜂 − 𝐻̃𝜃OR )𝐻̃
−1
𝜃OR

Δ| |2

≤ ||𝐻𝜃𝜂 − 𝐻̃𝜃OR | |2 | |
1

|𝑉 | 𝐻̃
−1
𝜃OR

Δ| |2

Assume the Hessian of 𝐿 is 𝛾1-Lipschitz, the first norm on the right-

hand side can be bounded as

| |𝐻𝜃𝜂 − 𝐻̃𝜃OR | |2 = | |∇2

∑︁
𝑣∈𝑉

L𝑏 (𝜃𝜂 ; 𝑣, 𝐸\𝐸UL)

− ∇2

∑︁
𝑣∈𝑉

L( ˜𝜃OR; 𝑣, 𝐸\𝐸UL) | |2

≤ 𝛾1 | |𝜃𝜂 − ˜𝜃OR | |2 = 𝛾1 | |
𝜂

|𝑉 | 𝐻̃
−1
𝜃OR

Δ| |2

≤ 𝛾1 | |
1

|𝑉 | 𝐻̃
−1
𝜃OR

Δ| |2 (21)

where 𝛾1 ≥ 0.

Then,

| |𝐺 ( ˜𝜃UL) | |2 ≤ 𝛾1
1

|𝑉 | | |𝐻̃
−1
𝜃OR

Δ| |2
2
.

Since L is 𝜆-strongly convex, we have | |𝐻̃−1
𝜃OR

| |2 ≤ 1

𝜆
, we mainly

focus on | |Δ| |2.
Observe

| |Δ| |2 = | |∇𝜃
∑︁

𝑣∈𝑉𝐸
UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸) − ∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL) | |2

=

������ ∑︁
𝑣∈𝑉𝐸

UL

[
∇L𝑏 + ( ˜𝜃OR; 𝑣, 𝐸) − ∇L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL)

] ������
2

≤
∑︁

𝑣∈𝑉𝐸
UL

������∇L𝑏 ( ˜𝜃OR; 𝑣, 𝐸) − ∇L𝑏 ( ˜𝜃OR; 𝑣, 𝐸\𝐸UL)
������
2

Consider 𝑍 denotes the input of the loss function without remov-

ing edges, such as 𝑍𝑣 ≜ ( ˜𝜃OR;𝐸), and 𝑍 ′
denotes ( ˜𝜃OR;𝐸\𝐸UL), we

have

| |Δ| |2 =
∑︁

𝑣∈𝑉𝐸
UL

| |∇L𝑏 (𝑍𝑣) − ∇L𝑏 (𝑍 ′
𝑣) | |2
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(a)

≤ 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

������𝑍𝑣 − 𝑍 ′
𝑣

������
2

= 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

������ ∑︁
𝑢∈𝑁 (𝑣)⋃{𝑣}

˜𝜃𝑇
OR

𝑥𝑢 −
∑︁

𝑢∈𝑁 ′ (𝑣)⋃{𝑣}

˜𝜃𝑇
OR

𝑥𝑢

������
2

(b)

= 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

������ ∑︁
𝑢∈𝑁 (𝑣)

˜𝜃𝑇
OR

𝑥𝑢

������
2

≤ 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

∑︁
𝑢∈𝑁 (𝑣)

������ ˜𝜃𝑇
OR

𝑥𝑢

������
2

≤ 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

∑︁
𝑢∈𝑁 (𝑣)

������ ˜𝜃OR������
2

������𝑥𝑢 ������
2

(c)

≤ 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

∑︁
𝑢∈𝑁 (𝑣)

������ ˜𝜃OR������
2

≤ 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

∑︁
𝑢∈𝑁 (𝑣)

𝑐

𝜆

(d)

= 𝛾2

∑︁
𝑣∈𝑉𝐸

UL

𝑛𝑣𝑐

𝜆

where𝑁 and𝑁 ′
are the set of neighbors of 𝑣 and the set of neighbors

that after removing 𝐸UL, respectively. In (𝑎), we apply 𝛾2-Lipschitz,
and we obtain (𝑏) due to 𝑁 ′ ⊂ 𝑁 and let 𝑁 (𝑣) = 𝑁 (·) − 𝑁 ′ (·).
According to Eqn. 15 in [9], we replace | |𝜃OR | | ≤ 𝑐1

𝜆
in (c). In (d)

𝑛𝑣 = |𝑁 (𝑣) | denotes the number of nodes in 𝑁 (𝑣).
Finally,

| |𝐺 (𝜃UL) | |2 ≤ 𝛾1
1

|𝑉 | | |𝐻̃
−1
𝜃OR

Δ| |2
2

≤ 𝛾1
1

|𝑉 | | |𝐻̃
−1
𝜃OR

| |2
2
| |Δ| |2

2

≤ 𝛾1
1

|𝑉 | ·
( 1
𝜆

)
2 ·

(𝛾2𝑐1
𝜆

∑︁
𝑣∈𝑉𝐸

UL

𝑛𝑣
)
2

≤
𝛾1𝛾

2

2
𝑐2
1

𝜆4 |𝑉 |

( ∑︁
𝑣∈𝑉𝐸

UL

𝑛𝑣

)
2

□

B.5 Proof of Theorem 9
Proof. The noisy loss function with 𝑙2-regularization is defined

as

L𝑏 =
1

|𝑉 |
∑︁
𝑣∈𝑉

𝐿(𝜃 ; 𝑣, 𝐸) + 𝜆

2

| |𝜃 | |2
2
+ 𝑏𝑇 𝜃 .

Correspondingly, the gradient of the noisy loss is

∇L𝑏 =
1

|𝑉 |
∑︁
𝑣∈𝑉

∇𝐿(𝜃 ; 𝑣, 𝐸) + 𝜆𝜃 + 𝑏,

and the Hessian

𝐻̃𝜃 = ∇2L𝑏 =
1

|𝑉 |
∑︁
𝑣∈𝑉

∇2𝐿(𝜃 ; 𝑣, 𝐸) + 𝜆𝐼,

Recall Eqn. 20,

| |𝐺 ( ˜𝜃UL) | | = | | 1

|𝑉 | (𝐻𝜃𝜂 − 𝐻̃𝜃OR )𝐻̃
−1
𝜃OR

Δ| |2

= | | 1

|𝑉 |2
∑︁
𝑣∈𝑉

(∇2L𝑏 (𝜃𝜂 ) − ∇2L𝑏 ( ˜𝜃OR))𝐻̃−1
𝜃OR

Δ| |2

≤ || 1

|𝑉 |2
| |
∑︁
𝑣∈𝑉

| |∇2L(𝜃𝜂 ) − ∇2L( ˜𝜃OR) | | | |𝐻̃−1
𝜃OR

Δ| |2 .

Given the Lipschitz constant 𝛾 of the second derivative ∇2𝐿, we

have

| |𝐺 (𝜃UL) | | ≤ 𝛾
1

|𝑉 |2
∑︁
𝑣∈𝑉

| |𝜃𝜂 − ˜𝜃OR | | | |𝐻̃−1
𝜃OR

Δ| |2

(a)

≤ 𝛾
1

|𝑉 |2
| |𝐻̃−1

𝜃OR
Δ| |2

2
,

(a) follows Eqn. (21).

□

B.6 Details of UEU: Efficient Unlearning
without Certified Guarantee

UEU follows a similar idea as CEU. It aims to identify an update to

𝜃OR through an analogous one-shot unlearning update:

𝜃UL = 𝜃OR + 1

|𝑉 | 𝐼𝐸UL
,

where 𝐼𝐸UL
is the influence of 𝐸UL on the target model, i.e., the

change on the model parameters by 𝐸UL, and 𝜃OR refers to the

parameters of the original model whose loss function does not have

noise.

First,UEU computes the new parameters 𝜃𝜁 ,𝐸UL
after the removal

of 𝐸UL as follows:

𝜃𝜁 ,𝑉𝐸
UL

= argmin

𝜃

1

|𝑉 |
∑︁
𝑣∈𝑉

𝐿(𝜃 ; 𝑣, 𝐸) + 𝜁
∑︁

𝑣∈𝑉𝐸
UL

𝐿(𝜃 ; 𝑣, 𝐸\𝐸UL)

− 𝜁
∑︁

𝑣∈𝑉𝐸
UL

𝐿(𝜃 ; 𝑣, 𝐸). (22)

Intuitively, Eqn. (22) approximates the effects that moving 𝜁 mass

of perturbation on 𝑉𝐸UL
with 𝐸\𝐸UL in place of 𝐸. Then we obtain

the following theorem.

Theorem 10. Given the parameters 𝜃𝑂𝑅 obtained by AUL on a
graph𝐺 , and the loss function 𝐿, assume that 𝐿 is twice-differentiable
and convex in 𝜃 , then the influence of a set of edges 𝐸𝑈𝐿 is:

𝐼𝐸UL
= −𝐻−1

𝜃OR

(
∇𝜃

∑︁
𝑣∈𝑉𝐸

UL

𝐿(𝜃OR; 𝑣, 𝐸\𝐸UL)−∇𝜃
∑︁

𝑣∈𝑉𝐸
UL

𝐿(𝜃OR; 𝑣, 𝐸)
)

(23)

where 𝐻𝑂𝑅 := ∇2 1

|𝑉 |
∑

𝑣∈𝑉 𝐿(𝜃𝑂𝑅, 𝑣, 𝐸) is the Hessian matrix of 𝐿
with respect to 𝜃OR.

Proof. For simplicity, we first define

𝑅(𝜃,𝑉 , 𝐸) =
∑︁
𝑣∈𝑉

𝐿(𝜃, 𝑣, 𝐸) .

Then, we formulate a GNN learning process as

𝜃OR = argmin

𝜃

1

|𝑉 |𝑅(𝜃,𝑉 , 𝐸). (24)
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Table 5: Model accuracy of CEU, two retrained models (Re-
train and R+N), and three baselines (BLPA, BEKM, UEU) for
Linear GCN model on Cora and CiteSeer datasets.

Dataset Type Method

Number of removed edges

0 200 400 600 800 1000

Cora

Retrain

Retrain 0.87 0.87 0.87 0.86 0.86 0.86

R+N 0.84 0.82 0.82 0.81 0.80 0.79

Unlearn

BLPA 0.58 0.54 0.58 0.58 0.59 0.58

BEKM 0.65 0.64 0.70 0.70 0.70 0.70

UEU 0.87 0.87 0.87 0.86 0.86 0.86

CEU 0.84 0.83 0.82 0.81 0.80 0.79

CiteSeer

Retrain

Retrain 0.77 0.77 0.77 0.76 0.76 0.76

R+N 0.75 0.75 0.75 0.75 0.75 0.75

Unlearn

BLPA 0.69 0.69 0.69 0.69 0.69 0.69

BEKM 0.72 0.72 0.72 0.72 0.72 0.72

UEU 0.77 0.77 0.77 0.77 0.76 0.76

CEU 0.75 0.75 0.75 0.74 0.75 0.75

Since removing edges can be considered as perturbing the input,

we introduce Eqn. 10,

𝜃𝜁 = argmin

𝜃

1

|𝑉 |
∑︁
𝑣∈𝑉

𝐿(𝜃 ; 𝑣, 𝐸) + 𝜁
∑︁

𝑣∈𝑉𝐸
UL

𝐿(𝜃 ; 𝑣, 𝐸\𝐸UL)

− 𝜁
∑︁

𝑣∈𝑉𝐸
UL

𝐿(𝜃 ; 𝑣, 𝐸)

= argmin

𝜃

1

|𝑉 |𝑅(𝜃,𝑉 , 𝐸) + 𝜁𝑅(𝜃,𝑉𝐸UL
, 𝐸\𝐸UL) − 𝜁𝑅(𝜃,𝑉𝐸UL

, 𝐸).
(25)

We note a necessary condition is that the gradient of Eqn. 25 at

𝜃𝜁 is zero. Then, we have

0 =
1

|𝑉 | ∇𝜃𝑅(𝜃𝜁 ,𝑉 , 𝐸)+𝜁∇𝜃𝑅(𝜃𝜁 ,𝑉𝐸UL
, 𝐸\𝐸UL)−𝜁∇𝜃𝑅(𝜃𝜁 ,𝑉𝐸UL

, 𝐸) .
(26)

Next, we apply Taylor series at 𝜃OR and we get

0 ≈ 1

|𝑉 | ∇𝜃𝑅(𝜃OR,𝑉 , 𝐸) + 𝜁∇𝜃𝑅(𝜃OR,𝑉𝐸UL
, 𝐸\𝐸UL) − 𝜁∇𝜃𝑅(𝜃OR,𝑉𝐸UL

, 𝐸)

+
[
1

|𝑉 | ∇
2

𝜃
𝑅(𝜃OR,𝑉 , 𝐸) + 𝜁∇2

𝜃
𝑅(𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL)

− 𝜁∇2

𝜃
𝑅(𝜃OR,𝑉𝐸UL

, 𝐸)
]
(𝜃𝜁 − 𝜃OR), (27)

where we have dropped 𝑜 (𝜃OR − 𝜃𝜁 ) for approximation. Then Eqn.

(27) is a linear system of 𝐸UL, the influence of 𝐸UL. Since 𝜃OR is

the minimum of Eqn. (24), we have
1

|𝑉 | ∇𝑅(𝜃OR,𝑉 , 𝐸) = 0. As 𝜁 is a

small value, we drop the two 𝑜 (𝜁 ) terms and have the following:

1

|𝑉 | ∇
2

𝜃
𝑅(𝜃OR,𝑉 , 𝐸) (𝜃𝜁 − 𝜃OR)

+ 𝜁

(
∇𝜃𝑅(𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL) − ∇𝜃𝑅(𝜃OR,𝑉𝐸UL
, 𝐸)

)
≈ 0.

Suppose Eqn. (24) is convex, then

𝜃𝜁 − 𝜃OR

≈ − 1

|𝑉 | ∇
2

𝜃
𝑅(𝜃OR,𝑉 , 𝐸)−1

(
∇𝜃𝑅(𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL) − ∇𝜃𝑅(𝜃OR,𝑉𝐸UL
, 𝐸)

)
𝜁

Denote

𝐼𝐸UL

:=
𝑑 (𝜃𝜁 − 𝜃OR)

𝑑𝜁

���
𝜁=0

= −𝐻−1
𝜃OR

(
∇𝜃𝑅(𝜃OR,𝑉𝐸UL

, 𝐸\𝐸UL) − ∇𝜃𝑅(𝜃OR,𝑉𝐸UL
, 𝐸)

)
where 𝐻𝑂𝑅 := ∇2 1

|𝑉 |
∑

𝑣∈𝑉 𝐿(𝜃𝑂𝑅, 𝑣, 𝐸). □

C ADDITIONAL EXPERIMENTAL RESULTS
C.1 Model Accuracy Results for Linear GCN on

More Datasets
Table 5 reports the model accuracy of GCN model on Cora and

CiteSeer datasets. Similar to Table 1, we first observe the model

accuracy obtained by CEU stays very close to that of the retrained

model, regardless of the number of removed edges. The difference

in model accuracy between the retrained and unlearned models re-

mains negligible (in the range of [0.06%, 0.57%] and [0.02%, 0.15%]]

on Cora and CiteSeer, respectively). Second, in terms of comparison

with both exact unlearning baselines (BEKM, BLPA), the model

accuracy by CEU is significantly higher than these two baselines

in all the settings. For example, when removing 200 edges from the

Cora dataset with GCN as the target model, both BEKM and BLPA

only can deliver model accuracy of around 0.53 and 0.64, while

CEU can deliver model accuracy of around 0.81. This demonstrates

the weakness of the exact unlearning through graph partitioning -

breaking the graph structure can bring non-negligible model accu-

racy loss. Third, regarding the comparison with the approximate

unlearning baseline (UEU), CEU has very similar model accuracy,

although UEU does not add perturbation to the model loss func-

tion. This demonstrates that CEU addresses the trade-off between

privacy and model accuracy—it can deliver a provable unlearning

guarantee while requiring negligible sacrifice on model accuracy.

C.2 Unlearning Performance for Deep GNN
Models

Model accuracy. Figures 8, 9, and 10 show the model accuracy

of GCN, GraphSAGE, and GIN for various complexity (2-, 3-, and

4-layer) respectively. Similar to the observations in Figure 6, despite

the model accuracy drops for both retrained and unlearned models

of higher complexity, the model accuracy of the unlearned model

remains close to that of the retrained model. The largest difference

between model accuracy is only around 5% (Figure 8 (f)). Secondly,

CEU outperforms two baselines (BLPA and BEKM) in terms of

model accuracy for all the settings. For example, the model accuracy

of CEU on the 4-layer GIN is 29% higher than BLPA when removing

1000 edges.

Unlearning efficiency. Figure 11 reports the running time of

retraining and CEU onGCNmodels with Cora and CiteSeer datasets.

We have similar observations as in Figure 7. First, although the

running time for both retraining and CEU grows with the increase

in the complexity of GNNmodels, CEU is always significantly faster

than retraining in all the settings, with the speedup factor as large

as 2.1X. Furthermore, we observe that CEU is faster than the two

baselines of exact unlearning (BLPA and BEKM) for most settings

on Cora and CiteSeer datasets.

Unlearning efficacy. Table 6 presents the unlearning efficacy

of the original model, retraining model, and CEU for the three GNN
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Figure 8: Model accuracy of CEU and retraining on deep GCN models.
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Figure 9: Model accuracy of CEU and retraining on GraphSAGE.

models on Cora and CiteSeer datasets respectively. The observa-

tions are similar as Table 3 and thus are omitted.
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Figure 10: Model accuracy of CEU and retraining on GIN.
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Figure 11: Time performance of retraining and CEU (GCN, Cora & CiteSeer datasets).
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Table 6: Unlearning efficacy (GCN, Citeseer dataset).

Setting |𝐸UL |
2-layer 3-layer 4-layer

Original Retrain CEU Original Retrain CEU Original Retrain CEU

GCN

+ Cora

200 0.936 0.604 0.587 0.942 0.568 0.570 0.937 0.558 0.562

400 0.940 0.597 0.599 0.937 0.578 0.569 0.930 0.578 0.559

600 0.942 0.599 0.589 0.937 0.578 0.571 0.939 0.572 0.563

800 0.940 0.599 0.594 0.938 0.583 0.574 0.934 0.563 0.560

1000 0.943 0.602 0.601 0.938 0.573 0.583 0.932 0.573 0.560

GCN

+ CiteSeer

200 0.954 0.641 0.632 0.953 0.627 0.620 0.951 0.608 0.625

400 0.954 0.640 0.634 0.952 0.625 0.622 0.951 0.618 0.620

600 0.958 0.643 0.639 0.953 0.632 0.622 0.957 0.625 0.623

800 0.955 0.655 0.647 0.954 0.641 0.631 0.953 0.631 0.630

1000 0.956 0.660 0.650 0.953 0.643 0.638 0.952 0.635 0.635

GraphSAGE

+ Cora

200 0.938 0.653 0.657 0.949 0.667 0.651 0.952 0.663 0.640

400 0.946 0.666 0.649 0.948 0.671 0.669 0.954 0.672 0.643

600 0.948 0.660 0.652 0.947 0.672 0.662 0.951 0.678 0.659

800 0.945 0.660 0.657 0.947 0.685 0.672 0.952 0.693 0.663

1000 0.942 0.667 0.657 0.950 0.697 0.681 0.950 0.699 0.676

GraphSAGE

+ CiteSeer

200 0.960 0.652 0.690 0.963 0.709 0.728 0.970 0.739 0.728

400 0.959 0.663 0.707 0.966 0.720 0.737 0.968 0.729 0.734

600 0.960 0.670 0.712 0.965 0.732 0.745 0.965 0.740 0.738

800 0.955 0.677 0.722 0.964 0.737 0.754 0.968 0.747 0.751

1000 0.957 0.683 0.724 0.965 0.743 0.757 0.969 0.755 0.759

GIN

+ Cora

200 0.928 0.596 0.587 0.906 0.592 0.592 0.889 0.576 0.563

400 0.925 0.603 0.592 0.908 0.600 0.586 0.899 0.592 0.560

600 0.920 0.612 0.596 0.910 0.606 0.588 0.895 0.598 0.560

800 0.923 0.613 0.597 0.910 0.603 0.583 0.896 0.586 0.559

1000 0.924 0.622 0.597 0.912 0.608 0.588 0.894 0.602 0.564

GIN

+ CiteSeer

200 0.941 0.645 0.613 0.917 0.629 0.606 0.904 0.596 0.597

400 0.937 0.643 0.628 0.919 0.622 0.610 0.909 0.598 0.599

600 0.934 0.655 0.639 0.919 0.624 0.609 0.905 0.617 0.597

800 0.938 0.656 0.637 0.916 0.635 0.616 0.907 0.623 0.599

1000 0.938 0.660 0.640 0.915 0.641 0.617 0.904 0.629 0.608

Table 7: Unlearning efficacy: CGU versus CEU.

|𝐸UL | Original R+N CGU CEU

200 0.952 0.622 0.605 0.598

400 0.951 0.623 0.618 0.620

600 0.952 0.616 0.617 0.622

800 0.951 0.627 0.625 0.624

1000 0.950 0.623 0.625 0.618
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Figure 12: Model accuracy: CGU [9] vs. CEU for SGC model.

C.3 CGU versus CEU on Citeseer and CS
Datasets

Model accuracy. Figure 12 presents the model accuracy of both

CGU [9] and CEU for Citeseer and CS datasets. The observations

are similar to those in Figure 5 (a); thus we omit the details.

Unlearning efficacy. Table 7 shows the unlearning efficacy

results by both CGU and CEU, where unlearning efficacy is mea-

sured as the accuracy (AUC) of the membership inference attack

(StealLink [19]). We observe that CGU and CEU have comparable

unlearning efficacy. This demonstrates empirically that CEU pro-

vides similar unlearning efficacy as CGU.
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Table 9: Target model accuracy under single-batch and se-
quential unlearning

Dataset Setting

Sequential

Batch

𝐵1 𝐵2 𝐵3 𝐵4

Cora

Retrain 0.875 0.874 0.873 0.874 0.872

UEU 0.873 0.873 0.873 0.875 0.871

R+N 0.818 0.816 0.818 0.819 0.815

CEU 0.815 0.814 0.821 0.820 0.811

CiteSeer

Retrain 0.778 0.778 0.778 0.777 0.776

UEU 0.777 0.778 0.778 0.777 0.774

R+N 0.750 0.749 0.750 0.749 0.750

CEU 0.750 0.755 0.751 0.752 0.753

CS

Retrain 0.937 0.937 0.937 0.937 0.937

UEU 0.937 0.937 0.938 0.937 0.937

R+N 0.930 0.930 0.930 0.930 0.930

CEU 0.931 0.929 0.931 0.931 0.930

Table 8: Impact of edge types on unlearning efficacy of CEU.

|𝐸UL | Edge Type Original R+N CEU

200

MaxD 0.631 0.610 0.629

Rand 0.930 0.595 0.609

MinD 0.931 0.704 0.709

400

MaxD 0.571 0.676 0.679

Rand 0.928 0.588 0.590

MinD 0.932 0.690 0.687

600

MaxD 0.644 0.661 0.667

Rand 0.927 0.592 0.588

MinD 0.927 0.689 0.681

800

MaxD 0.702 0.686 0.688

Rand 0.927 0.594 0.599

MinD 0.923 0.666 0.663

1000

MaxD 0.759 0.688 0.694

Rand 0.928 0.602 0.593

MinD 0.923 0.659 0.653

C.4 Impact of Type of Removed Edges on
Unlearning

To evaluate the impact of edge types on unlearning performance,

we consider three different strategies to pick edges for removal.

• Random sampling (Rand): we randomly sample 𝑘 edges from

the training graph.

• Max-degree & Min-degree sampling (MaxD & MinD): As GNN
models aggregate information from the neighboring nodes when

generating node embeddings, the size of node neighbors (i.e.,

node degree) directly affects the amounts of information of

edges encoded in GNNs. Therefore, we measure the impor-

tance of an edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) as its degree defined as EdgeDegree(𝑒)
= degree(𝑣𝑖 )+degree(𝑣 𝑗 ). Then we rank edges by their degree

in descending order and pick 𝑘 edges of the largest edge de-

gree (MaxD) as well as the 𝑘 edges of the smallest edge degree

(MinD) for removal.

Model accuracy. Figure 13 shows the model accuracy results

for removing three types of removed edges. We observe the non-

negligible impact of the type of removed edges on both retrained

and unlearned models. The retrained model witnesses the largest

and smallest drop in model accuracy for the MinD and MaxD edges

respectively (Figure 13 (a) & (b). Meanwhile, the unlearned model

witnesses the same trend as their corresponding retrained models,

where removing MinD edges and MaxD edges incur the largest and

smallest model accuracy downgrade on the unlearned model.

Unlearning efficacy. Table 8 reports the unlearning efficacy

results (AUC of StealLink attack) for removing three types of edges.

We observe the following phenomena. First, StealLink is effective

on predicting the existence of the three types of removed edges

from the original model, with the edges of “Rand” and “MinD” types

most vulnerable to the privacy attack. Second, the AUC of the attack

noticeably reduces when inferring from either the retrained or the

unlearned model. In particular, the AUC is reduced to around 0.6

for both “Rand” and “MinD” types of edges. This demonstrates

the forgettablity power of CEU. We also observe that the edges

of “MaxD” type always have the highest AUC before and after

retraining/unlearning. This suggests that “MaxD” type edges are

most vulnerable to the attack.

C.5 Sequential Unlearning
So far we only considered deleting one batch of edges. In practice,

there can be multiple batch deletion requests to forget the edges in

a sequential fashion. Next, we focus on the scenario where multiple

edge batches are removed sequentially. Specifically, we divide the

to-be-removed 𝐸UL into 𝑘 > 1 disjoint batches {𝐵𝑖 }𝑘𝑖=1, with each

batch consisting of the same number of edges. For each batch 𝐵𝑖
(1 ≤ 𝑖 ≤ 𝑘 − 1), we consider the target model obtained from retrain-

ing/unlearning of the previous batch 𝐵𝑖−1 as the original model

𝜃OR, and update 𝜃OR by removing 𝐵𝑖 (either by retraining or un-

learning). We evaluate the target model accuracy under sequential

unlearning and compare it with that under one-batch unlearning.

We consider 𝑘 = 4 and report the target model accuracy for

deleting 𝐸UL in one batch and deleting 𝐸UL in 𝑘 = 4 batches in Table

9. We also report the target model accuracy of the retrained and

unlearned models at each batch. We observe that, first, the accuracy

of the unlearned model remains close to the retrained model at each

batch during sequential removals. Second, the performance of the

unlearned model after removing 𝑘 batches stays close to that of the

model after single-batch unlearning. These results demonstrate that

CEU can handle sequential deletion of multiple batches of edges.

C.6 Impact of Distance between Removed Edges
and Testing Data on Unlearning
Performance

Intuitively, where the removed edges locate in the graph may affect

the unlearning performance. In particular, the unlearning perfor-

mance can be affected by how far the removed edges are from the

edges in the testing graph. Therefore, in this part of the experiment,

we investigate the impact of the distance between the removed

edges and the testing graph on unlearning performance.
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Figure 13: Model accuracy of different edge types (𝜎 = 0.1).

Table 10: Model accuracy of CEU of removing “close” and
“far-away” edges (GCN, Cora dataset).

Type

Number of removed edges

0 100 200 400 600 800 1,000

close 0.824 0.822 0.821 0.821 0.820 0.818 0.815

far-away 0.806 0.805 0.806 0.806 0.805 0.805 0.805

We define the distance between an edge 𝑒 (𝑢, 𝑣) and a node 𝑢′

(denoted as 𝑑𝑖𝑠 (𝑒,𝑢′)) as the minimum number of hops required for

𝑢′ to reach both𝑢 and 𝑣 . Then we define the distance between 𝑒 (𝑢, 𝑣)
and the testing dataset𝐺𝑆 (denoted as 𝑑𝑖𝑠 (𝑒,𝐺𝑆 )) as the minimum

distance between 𝑒 and any node in 𝐺𝑆 . Based on the distance

between any edge and the testing data, we classify the edges in the

training graph by their distance to𝐺𝑆 and select the edges with the

top-k highest distance as the “far-away” edges, and the edges with

the top-k lowest distance as the “close” edges.

To evaluate the impact of the distance between the removed

edges and the testing graph on unlearning performance, wemeasure

the accuracy of the unlearning model by CEU when removing

“close” and “far-away” edges. We randomly sample 10 test sets from

the Cora graph, and report the average results of the 10 trials in

Table 10. Themain observation is that removing close edges incurs a

higher change in the target model accuracy than removing far-away

edges. This is expected as for neighborhood aggregation-based

GNNs, a node exerts its influence on the nodes in its neighborhood.

Thus removing far-away edges has a more limited impact on target

model accuracy than the close ones.
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