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Abstract—Monitoring and forecasting epidemic diseases are of
prime importance to public health organizations and policymak-
ers in taking proper measures and adjusting prevention tactics.
Early prediction is especially important to restrict the spread
of emerging pandemics such as COVID-19. However, despite
increasing research and development for various epidemics, sev-
eral challenges remain unresolved. On the one hand, early-stage
epidemic prediction for emerging new diseases is difficult because
of data paucity and lack of experience. On the other hand,
many existing studies ignore or fail to leverage the contribution
of social factors such as news, geolocations, and climate. Even
though some researchers have recognized the profound impact of
social features, capturing the dynamic correlation between these
features and pandemics requires an extensive understanding of
heterogeneous formats of data and mechanisms. In this paper, we
design TLSS, a neural transfer learning architecture for learning
and transferring general characteristics of existing epidemic
diseases to predict a new pandemic. We propose a new feature
module to learn the impact of news sentiment and semantic
information on epidemic transmission. We then combine this
information with historical time-series features to forecast future
infection cases in a dynamic propagation process. We compare the
proposed model with several state-of-the-art statistics approaches
and deep learning methods in epidemic prediction with different
lead times of ground truth. We conducted extensive experiments
on three stages of COVID-19 development in the United States.
Our experiment demonstrates that our approach has strong
predictive performance for COVID infection cases, especially with
longer lead times.

Index Terms—COVID-19, Epidemic Forecasting, Transfer
Learning, Sentiment and Semantic Analysis

I. INTRODUCTION

In 2019, the Coronavirus disease (COVID-19) outbreak in
Wuhan, China rapidly spread worldwide. It was a novel disease
and evolved into a pandemic in a very short amount of time.
In January 2020, it was declared as a public health emergency
of international concern by WHO. Currently, according to
WHO, more than 200 million cases have been confirmed,
and more than 4 million deaths have been recorded [1]. Early
detection of a new type of disease, such as COVID-19, using
various indicators related to its progression provides valuable
opportunities for local governments and public authorities to
plan timely intervention, allocate medical resources, and adjust
control strategies.

Given system latencies in data collection and monitoring,
we primarily address the problem of COVID-19 forecasting
with a leadtime from 1 to 14 days based on surveillance data

of 50 states in the United States. It is intuitive to adapt tools
that have been developed for existing contagious diseases to
new emerging disease [34, 35]. Critical information and clues
about disease emergence and persistence mechanisms may
show similar patterns. In this work, we use Heterogeneous
Transfer Learning (HTL) methods to learn general charac-
teristics of existing epidemic diseases, such as influenza-like
illnesses (ILI), and transfer the learned knowledge to predict
an emerging epidemic disease, such as COVID-19. Existing
studies have already proved the impact of social factors on
public health such as the mediating effect of human awareness
and behavioral changes [4, 6]. In this paper, we explore the
impact of social factors on pandemic transmission from two
aspects: sentiment and semantic information of news. We aim
to explore two motivating questions: (1) will including public
opinions and emotions (e.g., panic or optimism) improve
epidemic forecasting performance? and (2) will the correlation
of public opinions from different locations affect epidemic
forecasting performance? Unstructured data such as text are
under-utilized for prediction tasks despite that they include
potentially valuable indicators. We use different sentiment and
semantic analysis methods to extract relevant features. Con-
sidering the dynamic variation of news over time in multiple
locations, we design a dynamic location-aware sentiment and
semantic attention mechanism to learn the correlation between
COVID-19 related news and the outbreak of COVID-19 cases.

Existing research on epidemic prediction has achieved great
success in various aspects. Mathematical methods, such as
stochastic processes, Markov chains, and compartmental mod-
els have outstanding performance in theoretical analysis of
macroscopic regularities of epidemic diffusion like the thresh-
old of an epidemic becoming urgent and the size/population
of epidemic infections [14]. The assumption of homogeneous
populations and small sets of variables is inadequate to capture
the variety of factors associated with epidemic spreading
processes [3]. Other statistical models such as Autoregres-
sive (AR) and Autoregressive Moving Average (ARMA) are
convenient and easy to use. Precise results can be obtained
in short-term time-series analysis [31]. However, they do
not perform well in relatively long-term COVID-19 trend
forecasting because of the evolution of diseases and human
environments over time. Some complex network methods,
such as system dynamic models, numerical simulations of
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(a) California: Normalized COVID-19 daily case count and normal-
ized occurrence of keywords (e.g., mask) in news articles.
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(b) Delaware: Normalized COVID-19 daily case count and normal-
ized occurrence of keywords (e.g., holidays) in news articles.

Fig. 1: Example demonstrating the potential correlation
between news articles and COVID-19 spread.

epidemics, and recurrent neural networks (RNN) are emerging
approaches to learn different spreading patterns, yet it is hard
to incorporate social factors in these methods for epidemic
predictions [9].

Several significant challenges remain in epidemic forecast-
ing especially with limited data. First, most mathematical and
statistical methods cannot capture cultural/societal temporal
dependencies directly and efficiently, using limited input data
from new diseases. For instance, holidays and festivals caused
a large-scale COVID-19 outbreak from November 2020 to Jan-
uary 2021. Second, it is hard to extract features from text data
and capture their internal association with numerical data over
time. Specifically, traditional word embedding methods cannot
accurately learn public opinions and emotions in news articles
relevant to each location’s epidemics. Third, sentiment and
semantic information of news are updated over time. Dynamic
news information has not been exhaustively explored with
limited feature extraction techniques. Figure 1 is a motivating
example to explain the motivation of using news articles as
an ancillary feature in epidemic prediction. In figure 1a, we
observe that COVID-19 infection cases decreased as well as
COVID-19 related keywords (e.g., mask) in news articles from

08/01/2020 to 10/15/2020 in California. It demonstrates the
potential correlation between public policies and COVID-19
outbreaks. The flu outbreak commonly occurs in Fall and Win-
ter, but COVID-19 cases show inconsistent outbreak patterns.
Figure 1b shows two peaks of holiday-related COVID-19
news on 11/26/2020 and 12/22/2020 respectively in Delaware.
Correspondingly, there are two massive COVID-19 outbreaks
on 12/03/2020 and 12/30/2020. It demonstrates that potential
influence of social factors (e.g., public sentiments reflected in
news articles) may be helpful in interpreting non-traditional
patterns of epidemic outbreaks.

In this paper, we focus on predicting daily infection cases
of an emerging epidemic (i.e., COVID-19) using limited his-
torical time-series data and epidemic-related news articles. We
design a neural transfer learning architecture for learning and
transferring common characteristics of an existing infectious
disease (i.e., ILI) to forecast an emerging disease (i.e., COVID-
19) that has sparse data. Meanwhile, we propose a module to
learn the impact of news sentiment and semantic information
on epidemic transmission to interpret non-traditional outbreak
patterns. We then combine learned semantic/sentiment repre-
sentations with sequential dependencies that are captured from
recurrent neural networks in local time-series data to forecast
future infection cases in a dynamic propagation process. Our
contributions are summarized below:

• We propose a novel heterogeneous transfer learning ar-
chitecture (HTL) to forecast future infection cases of the
emerging pandemic COVID-19 based on historical data.

• We extract sentiment and semantic features from COVID-
19 related news articles using Valence Aware Dictionary
for Sentiment Reasoning (VADER) and Sentence Trans-
formers (SBERT). We explore the impact of social factors
on epidemic prediction and explain the unconventional
variations of COVID-19 outbreaks.

• We design a module to learn the association of public
opinions among different locations. We adopt a dynamic
location-aware attention mechanism to capture the ever-
changing correlation between COVID-19 related news
and infection rates.

• We conduct experiments on three stages of real-world
COVID-19 data with different time settings. We compare
the proposed approach with a broad range of state-of-
the-art models to demonstrate the effectiveness of the
proposed model in COVID-19 forecasting.

II. RELATED WORK

A. Epidemic Forecasting

In epidemic forecasting, many different approaches are used
for understanding spreading patterns and evaluating disease
control policies. Time-series regression is one of the primary
directions of the problem formulation to model and simulate
epidemic diseases. There are several data-driven and statis-
tical approaches that have been developed for time series
forecasting [8], such as Auto-regression (AR), Autoregressive
Moving Average (ARMA), and Seasonal Auto-Regressive



Integrated Moving Average with eXogenous factors (SARI-
MAX) [10, 28, 29]. Sahai et al. [42] initially applied the
ARIMA model to predict the COVID-19 outbreak in the top
five most affected countries and proposed thought-provoking
suggestions for further improvement of epidemic forecasting.
Jain et al. [21] used exponential smoothing, ARIMA, and
SARIMA models to predict COVID-19 diffusion in terms of
the impact of festive seasons. Other complex deep learning
methods have garnered increasing interest in epidemic fore-
casting and demonstrated the great learning ability to capture
temporal dependencies [2, 44]. Xiao et al. [45]. proposed
a novel data-driven framework C-Watcher, which monitors
every neighborhood in a target city and predicts infection risks
before a COVID-19 outbreak in that city.

There are two general types of validation methods in time-
series analysis: direct forecasting and iterative forecasting.
Direct forecasting methods use historical data as one input
to predict a future value. Iterative methods recursively use
historical data as several inputs to update a model for future
predictions. One example is walk-forward validation [38] and
its principle is to walk through several training sets and test
sets over time to optimize a model and adapt the model to
real-world data updates.

B. Heterogeneous Transfer Learning

HTL aims to leverage knowledge extracted from a source
domain to a different but related target domain, which may
have different data distributions and label spaces [11]. Moon
and Carbonell [33] proposed Attentional Heterogeneous Trans-
fer which leverages both unlabeled source and target data
to enhance the discriminative power of feature mapping.
Its simulation studies have been implemented in many real-
world transfer learning tasks. Rodrı́guez et al. [41] designed
a COVID augmented ILI deep network (CALI-NET) which is
a transfer learning framework to forecast flu cases where flu
and COVID co-exist. However, CALI-NET cannot be directly
applied to forecast new epidemic diseases due to the restriction
of input data and the lack of training flexibility. Horry et al.
[19] demonstrated that neural transfer learning architectures
can improve the COVID-19 detection ability from standard
medical images such as X-Ray, Ultrasound, and CT scans.
The optimization of intelligent image classification models
can reduce the burden on medical professionals. Pal and Kar
[37] applied Fuzzy Transfer Learning in time series to predict
stock market prices and demonstrated that knowledge trans-
fer improves prediction accuracy with smoothing dependent
attributes over time.

C. Social Media Impact

With the increasing growth of Nature Language Processing
(NLP) techniques [36, 43], word embedding methods such
as word2vec [17], Global Vectors for Word Representation
(GloVe) [39], and Bidirectional Encoder Representations from
Transformers (BERT) [22] have improved the performance of
many NLP tasks. Many sentiment/topic analysis approaches
such as Latent Dirichlet allocation (LDA) [7], BERT based

sentiment classifier (BERTsent) [26], VADER [20] are also
commonly used to extract attitude, emotions, and opinions
from text. Textual data such as tweets, reports, and news
become complementary features in many time-series analyses.
Mahdikhani [30] proposed a new framework to detect public
emotions during the pandemic and after vaccination using
text embedding methods. They then analyzed the impact of
public emotions on the retweetability of posted tweets during
the COVID-19 pandemic. Kim and Ahn [23] used weekly
counts of influenza-related keywords in news articles in a
support vector machine (SVM) to predict if the number of
future patients increases or decreases. They then combined
with the data of cases to improve the accuracy of future
influenza patients’ prediction. In summary, many researchers
have reported a correlation between social factors and pan-
demic patterns [13, 25]. These previous studies are relevant
precedents for the design of a pandemic prediction model
based on social factors.

III. METHODOLOGY

A. Problem Formulation

As shown in Figure 2, we formulate the problem of
emerging epidemic forecasting as a heterogeneous transfer
learning model with three parts: a transfer learning module,
a simulation module, and a prediction module. The purpose
of the transfer learning module is to learn the general char-
acteristics of existing infectious diseases (e.g., flu) from a
source model Cola-GNN [12] and transfer the knowledge to
our proposed model for fine-tuning on new epidemic disease
data (e.g., COVID-19). The simulation module is for capturing
the temporal dependencies of COVID-19 cases and encoding
sentiment and semantic features in news articles over time.
In the prediction module, we combine the transfer learning
knowledge, temporal dependencies, and sentiment/semantic
features to predict future infection cases.

Given current time k, the objective is to forecast new
infection cases at a future time point k + h using historical
data from a past time window [k − T : k] where h represents
the leadtime of the prediction and T is the historical window
size. In the following, we ignore k in the notations for clarity.
First, we utilize historical daily COVID-19 time-series data
XXX ∈ RN×T where N is the number of locations. We pre-
train the news articles data to extract sentiment and semantic
features. We have pre-trained news sentiment data VVV ∈ RN×T

where VVV i,t is a scalar value to represent the average emotion
score of day t’s news for location i. We have pre-trained
semantic data SSS ∈ RN×T×50 where SSSi,t ∈ R50×1 represents
an average semantic vector of day t’s news for location i.
Details of these vectors are described in Section B and Section
C. Table I summarizes important notations.

B. Heterogeneous Transfer Learning

We learn the general characteristics of existing pandemics
(e.g., flu) from state-of-the-art models and transfer the learned
knowledge to predict new emerging diseases (e.g., COVID-
19). Given that our problem is a spatio-temporal prediction
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Fig. 2: Overview of the proposed framework TLSS. COVID-19 time-series data are imported to the top transfer learning
module to recognize the spread patterns of existing infectious disease. COVID-19 news sentiment and semantic data
are imported to the bottom module to learn how public opinion and emotions impact the COVID-19 outbreak.

TABLE I: Important notations and descriptions

Notation Description

T window size of one training input
k time index
N number of locations
h horizon/leadtime of a prediction

D, F feature dimensions
X∈ RN×T infection cases for N locations of window size T
V∈ RN×T sentiment scores for N locations of window size T

S∈ RN×T×50 semantic embeddings for N locations of window size T
Cv

k ∈ RN×N dynamic sentiment cosine similarity of N locations
Cs

k ∈ RN×N dynamic semantic cosine similarity of N locations
Gi,k ∈ RN×F learned representations from the source model
G′

i,k ∈ RN×F learned representations from the target model

task, we choose cross-location attention-based graph neural
networks (Cola-GNN) [12] as the base model. Cola-GNN
is designed to learn time series embeddings and geolocation
correlations for predicting long-term influenza-like illness.

In our framework, we set up the modified Cola-GNN model
as the source model and design a new module that incorporates
social factors in the target model. The proposed model aims
to efficiently and flexibly learn the characteristics of a new
epidemic virus (i.e., COVID-19) based on relevant existing
infectious diseases (i.e., ILI). We first initialize part of our
target model parameters based on the pre-trained Cola-GNN
model using ILI data. We then fine-tune the parameters in the
target model using COVID-19 data. As depicted in Fig. 2,
parts of the weights from the source model are shared with
the target model: WG → WG′

. We address the COVID-
19 data insufficiency problem by using the general epidemic

characteristics, which are learned from rich ILI historical data.
This transformation is defined as Gi,k → G′

i,k where i is the
index for a location and k is the index for a time stamp. The
hidden states of the modified Cola-GNN model are captured
in the fine-tuning process on COVID-19 dataset. In this way,
we project hidden features extracted from the heterogeneous
feature space into a shared latent space. Then we concatenate
these features with location-aware dynamic sentiment and
semantic features. Finally, we reconstruct all the features as
the input for final predictions.

C. Location-Aware Dynamic Sentiment Analysis

In this study, we dynamically model public concerns and
sentiments in different locations during the outbreak and
spreading of infectious disease from news data. We collect
COVID-19 related news articles from the Global Database
of Events, Language, and Tone (GDELT) [27] by keyword
filtering. Since GDELT data are unlabeled, we use an unsu-
pervised sentiment analysis method, VADER [20], to pre-train
the data and generate a sentiment score for each news article.
Sentiment scores measure emotions, sentiments, and attitudes
of word vectors [5]. VADER provides a sentiment score for
each word and then we sum up the scores of words in an article
to represent the sentiment of this article. Given a location, we
apply average pooling to the sentiment scores of news articles
in a day. Each location will have a scalar value to represent
the average polarity of news at the current time stamp.

To capture geographical correlations of public emotions, we
calculate the cosine similarity of news sentiment scores in a
past time window between every two locations. Once obtained
the sentiment scores VVV for each location, we select data in the



past time window of size T given current time stamp k to
calculate a dynamic sentiment cosine similarity between two
locations. We will update CCCv

k for each time stamp k.

CCCv
k[i, j] =

VVV i,[k−T :k] · VVV j,[k−T :k]

||VVV i,[k−T :k]|| · ||VVV j,[k−T :k]||
(1)

where VVV i,[k−T :k] ∈ RT and VVV j,[k−T :k] ∈ RT represent the
sentiment scores of location i and location j, respectively for
the past time window [k − T : k].

Inspired by Cola-GNN, we adopt a location-aware atten-
tion mechanism to learn temporal dependencies as well as
sentiment dependencies of locations from historical data. To
measure the impact of location i on location j from the hidden
states learned from RNN, we define ai,jai,jai,j in attention coefficient
matrix AAA as:

ai,jai,jai,j = vvvT g(WWW shhhi +WWW thhhj + bbbs) + bv, (2)

where hhhi and hhhj are the last hidden state hhhk of an RNN
model for location i and location j, WWW s, WWW t ∈ Rda×D,
vvv ∈ Rda , bs ∈ Rda , and bv ∈ R are trainable parameters.
da is a hyperparameter to control the dimensions of other
parameters. To combine sentiment cosine similarity matrix CCCv

k

and attention coefficient matrix AAA, we define an element gate
learned from the general attention matrix that evolves over
time. We then propose the location-aware sentiment attention
mechanism as:

Â̂ÂAv
k = σ(WWWmAAA+ bm111N111⊤N )⊙CCCv

k + (111N111⊤N )⊙AAA, (3)

where WWWm ∈ RN×N and bm ∈ R are trainable parameters.
We apply a linear transformation to location-aware sentiment
attention matrix Â̂ÂAv

k as:

LLLv
k =WWW vÂ̂ÂAv

k + bbbv, (4)

where LLLv
k ∈ RN×D is a dynamic matrix that changes over

different time stamps, and WWW v and bbbv are the trainable
parameters. We then project LLLv

k to the shared latent space and
concatenate it with other embeddings for predicting infection
cases at time point k + h.

D. Location-Aware Dynamic Semantic Analysis

Besides the sentiment features of news, the semantic infor-
mation of news articles plays an essential role in estimating
epidemic outbreaks. For example, the publicity of disease pre-
vention policies will help control the diffusion of epidemics.
To accurately extract semantic information from news, we
use Sentence-BERT (SBERT) [40] to construct an embedding
vector of each news article. SBERT is a modification of the
BERT network using siamese and triplet networks to derive
semantically meaningful sentence embeddings. We set the
maximum input length as 500 words in the pre-trained SBERT
base model to generate output embeddings with a default size
of 786. We apply Principle Component Analysis (PCA) to the
existing model and reduce the output embedding size from 768
to 50 dimensions. Using SBERT and PCA, we create a vector

s ∈ R50×1 for each news article to represent its semantic
information.

To capture geographical correlations of public opinions, we
calculate the cosine similarity of the news semantic matrices
for each pair of locations, since the sentence embeddings
trained by SBERT are semantically meaningful and can be
compared using cosine similarity. According to the tensor of
semantic embeddings SSS for each location at current time stamp
k, we select data with window size T to calculate a dynamic
semantic cosine similarity between two locations:

CCCs
k[i, j] =

concat(SSSi,[k−T :k]) · concat(SSSj,[k−T :k])

||concat(SSSi,[k−T :k])|| · ||concat(SSSj,[k−T :k])||
, (5)

where SSSi,[k−T :k] ∈ RT×50 represents the semantic information
of location i for a time-span from k − T to k. We apply a
concatenation function concat to reshape the matrix into a
vector of dimension RT∗50.

We also use the location-aware attention mechanism, as
introduced in Section III.C, to calculate the dynamic location-
aware semantic matrix Â̂ÂAs

k ∈ RN×N with a time-span of size
T . We apply linear transformation to this matrix to calculate
LLLs

k with trainable parameters WWW s and bbbs. We project LLLs
k to the

shared latent space and concatenate it with other embeddings
for forecasting infection cases at time point k + h.

LLLs
k =WWW sÂ̂ÂAs

k + bbbs, (6)

E. Prediction and Optimization

For a location i, given a time stamp k, we learn RNN
hidden states (hhhi,k ∈ RD) from historical infection cases (or
rates) of window size T , as well as the linear transformations
of the sentiment (LLLv

i,k ∈ RD) and semantics (LLLs
i,k ∈ RD)

features learned from news data. We combine the output of
the sentiment analysis (LLLv

i,k ∈ RD), the output of the semantic
analysis (LLLs

i,k ∈ RD), the hidden states (hhhi,k ∈ RD) from the
RNN model, and the hidden states learned from Cola-GNN
(GGG′

i,k ∈ RF ). We feed them to the output layer for prediction:

ŷi,k = ϕ(θθθ⊺[hhhi,k;LLL
v
i,k;LLL

s
i,k;GGG

′
i,k] + bθ), (7)

where ϕ is the activation function, and θθθ ∈ RD+D+D+F , bθ

are trainable parameters. D is the dimension of RNN hidden
states and sentiment/semantic outputs, and F is the dimension
of the transferred hidden states from the source model.

We compare the prediction value of each location with the
corresponding ground truth and optimize a regularized L1-
norm loss via gradient descent:

L(Θ) =

N∑
i=1

ni∑
k=1+T

|yi,k − ŷi,k|+ λR(Θ), (8)

where yi,k represents the ground truth, and ŷi,k represents
the prediction value. Θ represents all training parameters and
R(Θ) is the regularization term.



IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

1) Datasets:
• COVID-19 Cases Data This data is collected from CDC

US-COVID-19-Cases [16]. It contains COVID-19 daily con-
firmed cases (new patient counts) in 50 states of the United
States. The data includes three growing stages from 4/1/2020
to 9/30/2021.

• COVID-19 Original News Data This data is collected from
GDELT. It includes COVID-19 related news articles in 50
states of the United States from 4/1/2020 to 9/30/2021.

• Pre-trained News Sentiment Data We pre-train the
COVID-19 original news data using VADER to extract the
relevant sentiment score of each news article.

• Pre-trained News Semantic Data We pre-train the COVID-
19 original news data using SBERT to extract the relevant
semantic features of each news article.

We use the walk-forward cross-validation method to split the
COVID-19 data into three growing stages (e.g., data1 from
4/1/2020 to 9/30/2020, data2 from 10/1/2020 to 3/31/2021,
and data3 from 4/1/2021 to 9/30/2021) based on the exist-
ing studies on the outbreak seasonality of epidemics [32].
Each stage covers at least one outbreak peak of COVID-19
respectively. We then split each stage of COVID-19 data into
training, validation, and test set in chronological order at a
ratio of 70%-10%-20%. We normalize all data between 0 and
1 range for measuring variables at different scales based on
the training data. Validation data is used to avoid overfitting
and to determine the number of epochs to run.

TABLE II: Data description. Size means number of loca-
tions multiplied by the number of dates and the dimension
of daily data.

Dataset Size Max Min

COVID-19 Cases 50*548*1 34425 0
COVID-19 Original News 863k - -

Pre-trained News Sentiment 50*548*1 1 0
Pre-trained News Semantic 50*548*50 1 -1

2) Evaluation Metrics:
• The Root Mean Squared Error (RMSE) measures the

error between the predicted values from a model and ground
truth observations after converting the normalized values
into the real range:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2,

where ŷi is a predicted value and yi is the corresponding
ground truth value.

• Diebold-Mariano (DM) Test measures the accuracy of two
forecast methods (ŷ1, ŷ2), which compares the error between
the predicted values from two models and ground truth:
DM = (ŷ1,i − yi)

2 − (ŷ2,i − yi)
2, where ŷ1,i and ŷ2,i are

predicted values from two models.

• Leadtime: is the period between the current end of the input
time window and the target prediction time. For example,
leadtime=7 means the input is [x1, x2, . . . , xT ], and the
output is xT+7.

3) Comparison methods: We compare our proposed frame-
work with the following state-of-the-art approaches and their
derivative models:

• Autoregressive (AR) AR is a basic statistical method in
time-series prediction. The prediction values for future time
stamps are modeled as a linear transformation of historical
data in a past time window. In this work, we train individual
AR models for different locations. We set the hyperparam-
eter p to be the window size T .

• Autoregressive Moving Average (ARMA) ARMA is de-
rived from the AR model and combines with a moving
average (MA) term to better estimate the trend cycle of
historical data in time series prediction. In this work, the
size of moving average smoothing window is set as 2.

• Recurrent Neural Network (RNN) RNN is a state-of-the-
art deep learning model for temporal sequence learning,
widely used in epidemic forecasting. In this work, we
apply multiple versions of RNN with different inputs: RNN-
multilocation uses an input vector of COVID-19 infection
cases of multiple locations in the United States. RNN-
Global is an RNN model for COVID-19 case prediction
regardless of geolocation. The parameters are shared across
different regions. RNN-Global-keywords uses a pre-trained
news dataset as complementary features, which contains
the count of high-frequency vocabulary about COVID-19
in each news article. In RNN-Global-doc2vec, we initially
pre-train the news dataset using doc2vec to learn the news
embeddings and represent each news as a fixed-length
vector. We combine the news embeddings with infection
cases of each location and feed them to the RNN-Global
model for predicting future COVID-19 cases. All locations
share one RNN model.

• Cross-Location Attention Based Graph Neural Net-
work (Cola-GNN) Cola-GNN is a deep learning method
for learning time-series embeddings in long-term epidemic
forecasting. We utilize it in COVID-19 cases prediction
in multiple locations, considering the propagation at the
population level (e.g., geolocation). We also use it as the
source model of our proposed framework.

• Transfer Learning Network with News Sentiment and
Semantic Analysis (TLSS-Frozen) TLSS-Frozen is de-
rived from our proposed method TLSS when transferring
all characteristics of influenza to represent COVID-19 in
epidemic prediction. The target model’s parameters are
frozen and not updated based on the pre-trained source
model Cola-GNN using influenza data.

4) Hyper-parameter setup: In the experiments, we evaluate
multiple leadtime values from [1, 7, 14], and different input
window sizes from [9, 15, 20]. For the target model and
baselines involving the RNN module, the size of hidden states
is selected from [12, 20, 32, 64], and the number of hidden



TABLE III: Comparison of RMSE on three stages of the COVID-19 data with leadtime=1, 7, 14 days. Boldface
and underlined indicate the best and the second-best result of each column. Relative gain is the improvement of
TLSS compared with the second best result. The p-value of the Diebold-Mariano test is to measure the significant
improvement of TLSS with other baselines when window size = 20 on data3.

Leadtime = 1

RMSE Window size = 9 Window size = 15 Window size = 20

data1 data2 data3 Average data1 data2 data3 Average data1 data2 data3 Average p-value

AR 509 883 928 773 534 855 881 757 543 891 854 763
ARMA 520 863 912 765 536 850 866 751 540 884 852 759
RNN-Multilocation 483 827 950 753 498 829 870 732 518 858 862 746 ***
RNN-Global 672 1079 1136 962 716 1096 1108 973 720 1103 1105 976 ***
RNN-Global-keywords 704 1128 1189 1007 718 1145 1169 1011 730 1129 1163 1007 ***
RNN-Global-doc2vec 707 1284 1228 1073 719 1272 1219 1070 725 1250 1189 1055 ***
Cola-GNN 512 816 840 723 500 878 800 726 508 834 798 713 ***
TLSS-Frozen 510 849 869 743 502 826 848 725 516 843 827 729 ***
TLSS 502 820 837 720 495 817 807 706 502 831 793 709 -

% relative gain - - 0.4% 0.4% 1% 1.1% - 2.6% 1.2% 1.6% 0.6% 0.6%

Leadtime = 7

RMSE Window size = 9 Window size = 15 Window size = 20

data1 data2 data3 Average data1 data2 data3 Average data1 data2 data3 Average p-value

AR 548 1332 1049 973 586 1274 995 952 622 1347 947 972 ***
ARMA 574 1231 1024 943 595 1260 977 944 615 1323 936 958 ***
RNN-Multilocation 549 1136 1094 926 561 1127 1017 902 553 1090 988 877 **
RNN-Global 769 1493 1512 1258 778 1474 1456 1236 777 1482 1428 1229 ***
RNN-Global-keywords 788 1555 1608 1317 786 1564 1559 1303 841 1506 1494 1280 ***
RNN-Global-doc2vec 809 1666 1655 1377 818 1657 1614 1363 825 1684 1603 1371 ***
Cola-GNN 546 1132 965 881 585 1156 953 898 551 1089 926 855 *
TLSS-Frozen 554 1035 1034 874 573 1112 996 894 544 1031 973 849 ***
TLSS 543 1108 941 864 559 1091 931 860 536 1031 912 826 -

% relative gain 0.6% - 2.5% 1.2% 0.4% 1.9% 2.3% 3.8% 1.5% 5.3% 1.5% 2.7%

Leadtime = 14

RMSE Window size = 9 Window size = 15 Window size = 20

data1 data2 data3 Average data1 data2 data3 Average data1 data2 data3 Average p-value

AR 628 2071 1509 1403 664 2122 1361 1382 753 2094 1292 1380 **
ARMA 627 2032 1467 1375 662 2119 1331 1371 718 2103 1282 1368 **
RNN-Multilocation 600 1845 1481 1309 593 1846 1366 1268 597 1970 1286 1284
RNN-Global 974 1769 1988 1577 943 1762 1925 1543 963 1768 1873 1535 ***
RNN-Global-keywords 968 1782 2124 1625 938 1772 2079 1596 978 1796 2025 1600 ***
RNN-Global-doc2vec 994 1874 2234 1701 982 1916 2281 1726 970 1936 2340 1749 ***
Cola-GNN 644 1711 1392 1249 611 1759 1354 1241 594 1911 1279 1261
TLSS-Frozen 705 1649 1625 1326 607 1634 1513 1251 575 1551 1410 1179 ***
TLSS 606 1638 1331 1192 570 1615 1284 1156 543 1548 1226 1106 -

% relative gain - 0.7% 4.4% 4.6% 3.9% 1.2% 3.5% 6.8% 5.6% 0.2% 4.1% 6.2%
ap-values (* , **, *** indicate statistical significance at p < 0.10, p < 0.05, and p < 0.01)

layers is selected from [1, 2, 3]. All models are trained using
the Adam optimizer [24] with a weight decay of 5e-4 and a
dropout rate of 0.2. The initial learning rate is searched from
the set [0.001, 0.005, 0.01], the training epoch is 1500, and
the batch size is 32. We implement early stopping based on
the validation loss.

When pre-training the source model Cola-GNN, the input
window size T is 30, and and we keep the leadtime consistent
with TLSS. For the RNN module, the size of hidden states is
selected from [10, 20, 30] and the number of hidden layers is
selected from [1, 2, 3]. In the multi-scale dilated convolution
module in Cola-GNN, we set 10 filters, and long-term and
short-term dilation rates equal to 2 and 1. The model is

trained using the Adam optimizer with a weight decay of
5e-4 and a dropout rate of 0.2. The initial learning rate is
0.001, the training epoch is 1500, and the batch size is 32.
The trained parameters of dilated convolution layers in the
source model are shared with the target model TLSS and set
as initializations.

B. Results

We evaluate the model performance on leadtime = [1, 7,
14] and window size T = [9, 15, 20] for three stages =
[data1, data2, data3] of COVID-19. In table III, all the model
results are summarized based on RMSE. The large difference
in RMSE values across different stages of COVID-19 is



because of the epidemic seasonality and other uncertainties.
The large-scale outbreak peak periods of COVID-19 are in
data2 (10/1/2021-3/31/2022) and data3 (4/1/2022-9/30/2022)
stages. When leadtime = 1, our proposed method overcomes
most baselines with relatively stable and optimal performance.
Except for RNN-Global models, most approaches exhibit
relatively good performance in capturing temporal patterns,
which is due to the small information gap between the history
window and the predicted time. When the leadtime is 7, our
approach outperforms all other models in all three stages of the
COVID-19 spread with different window sizes. Compared with
some deep learning methods (RNN-multilocation, Cola-GNN,
and TLSS), traditional statistical models AR and ARMA have
decreasing performance when leadtime becomes longer. This
shows the impact of model complexity on the time series fore-
casting with limited input. When the leadtime is 14, our model
successfully captures the potential correlation between news
articles and time series to achieves more accurate predictions
than other models in most cases.

Only RNN-multilocation, Cola-GNN, and TLSS-Frozen
have competitive prediction abilities with TLSS in some cases.
The RNN-Global models are not performing well because they
do not consider spatio-temporal dependencies. This demon-
strates the importance of geolocation correlation in epidemic
prediction at the population level. Specifically, RNN-Global-
keywords and RNN-Global-doc2vec do not achieve good
performance in the three stages of COVID-19 even with social
factors (e.g., COVID-19 keywords and news embeddings). It
suggests that the complex relationship between text data and
numerical data cannot be easily captured. TLSS has better
performance (higher % relative gain) with a large historical
window because of the latency of news publication and the
incubation time of the COVID-19 virus. Using the Diebold-
Mariano Test [15, 18], we compare the improvement of
TLSS with other baselines when window size = 20 on data3,
which has the most observations among the three stages of
COVID-19. Source model Cola-GNN achieves good perfor-
mance with larger leadtime because it is designed for long-
term epidemic prediction. Our proposed model TLSS shows
statistically significant improvement in COVID-19 prediction
in most cases, especially with leadtime = 7.

Overall, our proposed model outperforms all baseline meth-
ods in most situations. The models directly using news data
(pre-trained embeddings or keywords) have weak perfor-
mance. It suggests that temporal dependencies are hard to
capture in text data. It is still a challenge to deeply learn the
dynamic impact of social factors on epidemic diseases.

C. Ablation Tests

To evaluate the contribution of each component in our
framework, we implement an ablation test on the three stages
of COVID-19 data with the following settings: 1) TLSS w/o
transfer learning: Remove the transfer learning architecture
from the proposed method, only use COVID-19 time-series
data as input in the model. 2) TLSS w/o sentiment anal-
ysis: Remove the sentiment analysis module. 3) TLSS w/o

semantic analysis: Remove the semantic analysis module. We
use RMSE to evaluate the model performance with each
module in table IV. We observe that TLSS achieves the best
performance on average for forecasting COVID-19 infection
cases in three stages. We also implement the DM-Test to
measure the improvement of each component within TLSS on
data3. In most cases, the proposed model shows significant
improvement with transfer learning architecture, because it
can capture the regularity of existing diseases and transfer the
learned knowledge to the target model for emerging disease
predictions. Models that involve news sentiment and semantic
analysis produce good results, especially when using a larger
window size of historical data. The news sentiment has a more
obvious impact than news semantic information on a COVID-
19 outbreak in most cases, which indicates public emotion is
crucial for epidemic prevention. The ablation test results show
that our model can accurately predict epidemic transmission
by capturing social factors’ impact and by learning the general
characteristics of existing pandemics.

TABLE IV: Ablation test result in three stages of COVID-
19 with a leadtime of 14.

RMSE Window size = 9

data1 data2 data3 Average p-value

TLSS 606 1638 1331 1192 -
w/o transfer learning 593 1808 1409 1270 *
w/o sentiment 592 1864 1702 1386 ***
w/o semantic 607 1852 1395 1285 ***

RMSE Window size = 15

data1 data2 data3 Average p-value

TLSS 570 1615 1284 1156 -
w/o transfer learning 563 1778 1377 1239 *
w/o sentiment 597 1639 1552 1263 **
w/o semantic 574 1569 1340 1161 ***

RMSE Window size = 20

data1 data2 data3 Average p-value

TLSS 543 1548 1226 1106 -
w/o transfer learning 576 1584 1341 1167 **
w/o sentiment 568 1566 1411 1182 *
w/o semantic 548 1785 1362 1232
ap-values (* , **, *** indicate statistical significance
at p < 0.10, p < 0.05, p < 0.01)

D. Model Complexity

In table V, we compare the runtime and the number of
parameters for each model on the third stage of COVID-
19 (data3) because it has the most observations among all
three stages. In this work, models including AR, ARMA, and
RNN-Global have the most efficient runtime because of lower
dimension inputs and simpler model complexities. Our pro-
posed model TLSS contains multiple features such as COVID-
19 cases, news sentiments, and news semantics. Compared
with other baseline models, it shows no significant adverse
efficiency on training time. It achieves better performance than
its source model Cola-GNN.



TABLE V: Model parameter and runtime comparison.
Runtime is the time spent on a single GPU per epoch.

Model Parameters Runtimes
AR 500 0.02
ARMA 900 0.03
RNN-Multilocation 13K 0.33
RNN-Global 481 0.06
RNN-Global-keywords 16K 0.24
RNN-Global-doc2vec 16K 0.24
Cola-GNN 22K 0.86
TLSS-Frozen 18K 0.91
TLSS 18K 0.72

In figure 3, we compare the training epochs of the source
model Cola-GNN and our proposed model TLSS on the
COVID-19 dataset. Our proposed method achieves the best
result with fewer training epochs in most cases. All programs
are implemented using Python 3.9.4 and PyTorch 1.11.0 in an
Ubuntu server with an Nvidia 1080Ti GPU.
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Fig. 3: Average training epochs in the three stages of
COVID-19 data with window size T .

E. Statistical Summary of Models

Figure 4 shows the statistical analysis of average RMSE
for deep learning models (RNN-Multilocation, Cola-GNN,
and TLSS) when leadtime = 14. We calculate RMSE on 10
randomized trials to observe the model improvement com-
pared with two competitive baselines. Our proposed model
TLSS achieves more accurate predictive performance with
different window sizes.

V. CONCLUSION

In this work, we introduce the challenges of forecasting
emerging epidemic disease (i.e., COVID-19) and propose a
novel framework TLSS to address these issues. We design
a heterogeneous transfer learning architecture to learn the
standard patterns from existing relevant infectious diseases
(i.e., ILI) and transfer the knowledge to a target model for
COVID-19 prediction. We implement a social feature learning
module to analyze the impact of social factors (e.g., news) on
the spread of pandemics from both sentiment and semantic
aspects. We adopt a location-aware attention mechanism to
capture the dynamic correlation between news text data and

time-series numerical data over time. We evaluate our pro-
posed model on three stages of COVID-19 propagation and
demonstrate its effectiveness and accuracy in predicting future
infection cases with different lead times. In the future, we will
extend the proposed framework to other types of diseases and
investigate other source models. Furthermore, we will explore
more complex factors such as local policies, cultures, and
climate changes.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation under grants 1948432 and 2047843.

REFERENCES

[1] WHO coronavirus (covid-19) dashboard. URL https://covid19.
who.int/.

[2] Bijaya Adhikari, Xinfeng Xu, Naren Ramakrishnan, and
B. Aditya Prakash. Epideep: Exploiting embeddings for epi-
demic forecasting. In 25th ACM SIGKDD, KDD ’19, page
577–586, New York, NY, USA, 2019.

[3] Asif Afzal, C Ahamed Saleel, Suvanjan Bhattacharyya,
N Satish, Olusegun David Samuel, and Irfan Anjum Badruddin.
Merits and limitations of mathematical modeling and compu-
tational simulations in mitigation of COVID-19 pandemic: A
comprehensive review. Arch. Comput. Methods Eng., 29(2):
1311–1337, 2022.

[4] Hani Al-Dmour, Ra’ed Masa’deh, Amer Salman, Mohammad
Abuhashesh, and Rand Al-Dmour. Influence of social media
platforms on public health protection against the COVID-19
pandemic via the mediating effects of public health awareness
and behavioral changes: Integrated model. J. Med. Internet Res.,
22(8):e19996, August 2020.

[5] Alexandra Balahur, Rada Mihalcea, and Andrés Montoyo. Com-
putational approaches to subjectivity and sentiment analysis:
Present and envisaged methods and applications. Computer
Speech Language, 28:1–6, 01 2014.

[6] Mesfin A Bekalu, Rachel F McCloud, and K Viswanath. As-
sociation of social media use with social well-being, positive
mental health, and self-rated health: Disentangling routine use
from emotional connection to use. Health Educ. Behav., 46
(2 suppl):69–80, December 2019.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3(null):993–1022,
mar 2003.

[8] Peter J Brockwell and Richard A Davis. Time Series: Theory
and Methods. Springer-Verlag, Berlin, Heidelberg, 1986.

[9] Jianguo Chen, Kenli Li, Zhaolei Zhang, Keqin Li, and Philip S.
Yu. A survey on applications of artificial intelligence in fighting
against covid-19, 2020.

[10] Fatoumata Dama and Christine Sinoquet. Time series analysis
and modeling to forecast: a survey, 2021.

[11] Oscar Day and Taghi M Khoshgoftaar. A survey on heteroge-
neous transfer learning. Journal of Big Data, 4(1):29, September
2017.

[12] Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing
Wang, and Yue Ning. Cola-gnn: Cross-location attention based
graph neural networks for long-term ili prediction. In 29th ACM
CIKM, CIKM ’20, page 245–254, New York, NY, USA, 2020.

[13] Erhu Du, Eddie Chen, Ji Liu, and Chunmiao Zheng. How do
social media and individual behaviors affect epidemic trans-
mission and control? Science of The Total Environment, 761:
144114, 2021.

[14] Wei Duan, Zongchen Fan, Peng Zhang, Gang Guo, and Xi-
aogang Qiu. Mathematical and computational approaches to

https://covid19.who.int/
https://covid19.who.int/


RNN-Multilocation Cola-GNN TLSS

1200

1220

1240

1260

1280

1300

1320

1340

RM
SE

(a) Window Size = 9

RNN-Multilocation Cola-GNN TLSS
1160

1180

1200

1220

1240

1260

1280

1300

RM
SE

(b) Window Size = 15

RNN-Multilocation Cola-GNN TLSS
1100

1150

1200

1250

1300

1350

RM
SE

(c) Window Size = 20

Fig. 4: Statistics analysis of the prediction results from RNN-Multilocation, Cola-GNN, and TLSS.

epidemic modeling: a comprehensive review. Frontiers of
Computer Science, 9(5):806–826, October 2015.

[15] f. x. and r. s. mariano. comparing predictive accuracy. journal
of business and economic statistics, 13:253–263.

[16] CDC Case Task Force. United states covid-19 cases and deaths
by state over time.

[17] Yoav Goldberg and Omer Levy. word2vec explained: deriving
mikolov et al.’s negative-sampling word-embedding method.
CoRR, abs/1402.3722, 2014.

[18] David Harvey, Stephen Leybourne, and Paul Newbold. Testing
the equality of prediction mean squared errors. International
Journal of Forecasting, Jun 1998.

[19] Michael J Horry, Subrata Chakraborty, Manoranjan Paul, An-
waar Ulhaq, Biswajeet Pradhan, Manas Saha, and Nagesh
Shukla. COVID-19 detection through transfer learning using
multimodal imaging data. IEEE Access, 8:149808–149824,
August 2020.

[20] C J Hutto and E E Gilbert. VADER: A parsimonious rule-based
model for sentiment analysis of social media text. In ICWSM-
14. Ann Arbor, MI, 2014.

[21] Aayush Jain, Tanay Sukhdeve, Himanshu Gadia, Satya Prakash
Sahu, and Satya Verma. Covid19 prediction using time series
analysis. In 2021 ICAIS, pages 1599–1606, 2021.

[22] Rohit Kumar Kaliyar. A multi-layer bidirectional transformer
encoder for pre-trained word embedding: A survey of bert. In
2020 10th Confluence, pages 336–340, 2020.

[23] Juhyeon Kim and Insung Ahn. Weekly ILI patient ratio change
prediction using news articles with support vector machine.
BMC Bioinformatics, 20(1):259, May 2019.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014.

[25] Sameer Kumar, Chong Xu, Nidhi Ghildayal, Charu Chandra,
and Muer Yang. Social media effectiveness as a humanitarian
response to mitigate influenza epidemic and COVID-19 pan-
demic. Annals of Operations Research, January 2021.

[26] Rabindra Lamsal, Aaron Harwood, and Maria Rodriguez Read.
Twitter conversations predict the daily confirmed covid-19
cases, 2022.

[27] Kalev Leetaru and Philip A. Schrodt. Gdelt: Global data on
events, location, and tone. ISA Annual Convention, 2013.

[28] Zhenyu Liu, Zhengtong Zhu, Jing Gao, and Cheng Xu. Forecast
methods for time series data: A survey. IEEE Access, 9:91896–
91912, 2021.

[29] G. Mahalakshmi, S. Sridevi, and S. Rajaram. A survey on
forecasting of time series data. In ICCTIDE’16, pages 1–8,
2016.

[30] Maryam Mahdikhani. Predicting the popularity of tweets by
analyzing public opinion and emotions in different stages of
covid-19 pandemic. IJIM Data Insights, 2(1):100053, 2022.

[31] Spyros Makridakis. A survey of time series. ISR, 44(1):29–70,

1976.
[32] Cory Merow and Mark C Urban. Seasonality and uncertainty

in global COVID-19 growth rates. Proc. Natl. Acad. Sci. U. S.
A., 117(44):27456–27464, November 2020.

[33] Seungwhan Moon and Jaime Carbonell. Completely heteroge-
neous transfer learning with attention - what and what not to
transfer. In IJCAI-17, pages 2508–2514, 2017.

[34] David M Morens and Anthony S Fauci. Emerging infectious
diseases in 2012: 20 years after the institute of medicine report.
MBio, 3(6), December 2012.

[35] David M Morens, Peter Daszak, and Jeffery K Taubenberger.
Escaping pandora’s box - another novel coronavirus. N. Engl.
J. Med., 382(14):1293–1295, April 2020.

[36] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W
Chapman. Natural language processing: an introduction.
JAMIA, 18(5):544–551, 09 2011.

[37] Shanoli Samui Pal and Samarjit Kar. Fuzzy transfer learning in
time series forecasting for stock market prices. Soft Comput.,
26(14):6941–6952, jul 2022.

[38] Robert Pardo. WALK-FORWARD ANALYSIS. John Wiley amp;
Sons, Inc., 2011.

[39] Jeffrey Pennington, Richard Socher, and Christopher Manning.
GloVe: Global vectors for word representation. In EMNLP,
pages 1532–1543, Doha, Qatar, October 2014. ACL.

[40] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence em-
beddings using siamese bert-networks. CoRR, abs/1908.10084,
2019.

[41] Alexander Rodrı́guez, Nikhil Muralidhar, Bijaya Adhikari,
Anika Tabassum, Naren Ramakrishnan, and B. Aditya Prakash.
Steering a historical disease forecasting model under a pan-
demic: Case of flu and COVID-19. CoRR, abs/2009.11407,
2020.

[42] Alok Kumar Sahai, Namita Rath, Vishal Sood, and Manven-
dra Pratap Singh. ARIMA modelling & forecasting of COVID-
19 in top five affected countries. Diabetes Metab. Syndr., 14
(5):1419–1427, September 2020.

[43] Yasir Ali Solangi, Zulfiqar Ali Solangi, Samreen Aarain, Amna
Abro, Ghulam Ali Mallah, and Asadullah Shah. Review on
natural language processing (nlp) and its toolkits for opinion
mining and sentiment analysis. In 2018 IEEE 5th ICETAS,
pages 1–4, 2018.

[44] Lijing Wang, Jiangzhuo Chen, and Madhav V. Marathe. Defsi:
Deep learning based epidemic forecasting with synthetic infor-
mation. In AAAI, 2019.

[45] Congxi Xiao, Jingbo Zhou, Jizhou Huang, An Zhuo, Ji Liu,
Haoyi Xiong, and Dejing Dou. C-watcher: A framework for
early detection of high-risk neighborhoods ahead of covid-19
outbreak. AAAI, 35(6):4892–4900, May 2021.


	Introduction
	Related Work
	Epidemic Forecasting
	Heterogeneous Transfer Learning
	Social Media Impact

	Methodology
	Problem Formulation
	Heterogeneous Transfer Learning
	Location-Aware Dynamic Sentiment Analysis
	Location-Aware Dynamic Semantic Analysis
	Prediction and Optimization

	Experimental Evaluation
	Experiment Setup
	Datasets
	Evaluation Metrics
	Comparison methods
	Hyper-parameter setup

	Results
	Ablation Tests
	Model Complexity
	Statistical Summary of Models

	Conclusion

