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Abstract. Knowledge graphs (KGs) are a way to model data involving
intricate relations between a number of entities. Understanding the in-
formation contained in KGs and predicting what hidden relations may
be present can provide valuable domain-specific knowledge. Thus, we
use data provided by the 5th Annual Oak Ridge National Laboratory
Smoky Mountains Computational Sciences Data Challenge 2 as well as
auxiliary textual data processed with natural language processing tech-
niques to form and analyze a COVID-19 KG of biomedical concepts
and research papers. Moreover, we propose a recurrent graph convo-
lutional network model that predicts both the existence of novel links
between concepts in this COVID-19 KG and the time at which the link
will form. We demonstrate our model’s promising performance against
several baseline models. The utilization of our work can give insights
that are useful in COVID-19-related fields such as drug development
and public health. All code for our paper is publicly available at https:
//github.com/RemingtonKim/SMCDC2021.
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1 Introduction

In recent years, the amount of data in a variety of domains has skyrocketed.
Amidst this vast collection of information, there exist entities and relationships
that can be modelled as a knowledge graph (KG) in which the entities are the
nodes and the relationships are the edges. Although KGs can be extremely illu-
minating, the quantity of data contained in many KGs makes them prohibitively
vast for manual review. Thus, a computational model that predicts novel connec-
tions in these KGs can provide valuable insight without time-consuming labor
and reveal relationships unapparent to humans.

A relevant example of a KG is a COVID-19 KG of biomedical concepts and
research papers formed using the scientific literature. Predictions of novel links
in a COVID-19 KG may be helpful in areas such as drug development, public
health, etc. To this end, we make the following contributions in this paper:

https://orcid.org/0000-0003-3399-1122
https://orcid.org/0000-0002-1227-440X
https://github.com/RemingtonKim/SMCDC2021
https://github.com/RemingtonKim/SMCDC2021


2 R. Kim and Y. Ning

1. We construct a COVID-19 KG using data provided by the Oak Ridge Na-
tional Laboratory Smoky Mountains Computational Sciences Data Chal-
lenge and auxiliary data processed with natural language processing tech-
niques. We then analyze this network and its properties.

2. We propose a multi-task recurrent graph convolutional network (MTL-Recurrent
GCN) that predicts the existence of novel links in a COVID-19 KG as well
as the time at which a link will form.

3. We compare the performance of our model to several baselines and evaluate
each model’s performance using accuracy, AUC, precision, recall, and F1
score.

2 Related Work

COVID-19 Knowledge Graphs. In response to the COVID-19 crisis, several
KGs centered around COVID-19 have been formed. A cause-and-effect COVID-
19 KG was constructed from the scientific literature that contains 10 node types,
including proteins and genes, and 10,232 edge types, including increases and
association [4]. For ease of access, this KG was made available on a public web
application. Wise et al. [14] built a COVID-19 KG of research papers and trained
a model that utilizes KG embeddings for retrieving similar papers. Giarelis et
al. [5] developed a method for predicting future research collaboration links in a
COVID-19 KG that incorporates structured and unstructured text data using a
graph-of-docs representation.

Temporal Link Prediction. Temporal link prediction is the task of predicting
the formation of links in the future state of a dynamic network [3]. Peddada and
Kostas [11] performed temporal link prediction on a Pinterest network using
temporal feature extraction of proximity measures and machine learning models.
Li et al. [8] developed a self-attention and graph convolutional network-based
temporal link prediction model that outputs the probability of a link between
every pair of nodes at the next timestep given a sequence of graphs. They apply
their model to a private message, an interaction, and two email networks. Their
model focuses on the sole task of link prediction, unlike our work which predicts
the time of link formation as well.

3 Methodology

3.1 Problem Formation

We assume that Gt = (Vt, Et, Xt) is an undirected graph at time t, where Vt
is the set of nodes, Et is the set of edges, Nt = |Vt| is the number of nodes,
and Xt ∈ RNt×F is the matrix containing the F features for each node. Ev-
ery edge in Et has an associated r, which is its relation type. Let St,j =
{Gt−j−(α−1)l, ..., Gt−j−l, Gt−j} represent a sequence of graphs where j is the
leadtime, l is the time length between two consecutive graphs in St,j , and α is
the number of graphs in St,j .

The task of the model is to predict the existence of a link between target
nodes u and v that forms at time t as well as j given (St,j , u, v). In other words,
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the model predicts whether or not a link will form and when a link will form. As
there are two objectives, this can be modeled as a multi-task learning problem.

3.2 Model
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Fig. 1: Architecture of MTL-Recurrent GCN. GCN-LSTM represents a Cheby-
shev Graph Convolutional Long Short Term Memory cell and FC represents a
fully connected layer. u and v are the target nodes.

The architecture of our model, MTL-Recurrent GCN, is displayed in Fig 1.
We utilize a Chebyshev Graph Convolutional Long Short Term Memory cell
(GCN-LSTM) [13] for the recurrent unit of our model. A GCN-LSTM employs
a Chebyshev Graph Convolutional operator to learn graph features and a Long
Short Term Memory cell to learn temporal dependencies within the sequence of
input graphs [13].

Given X, the node feature matrix of graph G, Chebyshev Graph Convolu-
tional operator [2] computes

X ′ =

K−1∑
k=0

T (k) ·W (k)

T (0) = X

T (1) = L̂ ·X
T (k≥2) = 2 · L̂ · T (k−1) − T (k−2).

(1)

Here, W (k) is a learnable weight matrix, and L̂ = 2(I−D
−1
2 AD

−1
2 )

λmax
− I is the

normalized Laplacian where I is the identity matrix, D is the diagonal degree
matrix of G, A is the adjacency matrix of G, and λmax is the largest eigenvalue

of I −D−1
2 AD

−1
2 .
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A GCN-LSTM [13] builds upon this Chebyshev Graph Convolutional oper-
ator with an Long Short Term Memory cell. Given Xt, the node feature matrix
of graph Gt, it computes

it = σ(ζ(Wxi, Xt) + ζ(Whi, ht−1) + wci � ct−1 + bi)

ft = σ(ζ(Wxf , Xt) + ζ(Whf , ht−1) + wcf � ct−1 + bf )

ct = ft � ct−1 + it � tanh(ζ(Wxc, Xt) + ζ(Whc, ht−1) + bc)

o = σ(ζ(Wxo, Xt) + ζ(Who, ht−1) + wco � ct + bo)

ht = o� tanh(ct).

(2)

Here, ζ(W,X) denotes the Chebyshev Graph Convolutional operator where W
is the tensor of learnable weight matrices utilized in (Eq. 1) and X is a node
feature matrix. Weights w and biases b are also learnable parameters. h and c
are the hidden and cell state matrices, respectively. � denotes the Hadamard
product, and σ and tanh denote the sigmoid and hyperbolic tangent activation
functions, respectively.

In the case of MTL-Recurrent GCN, the input is (St,j , u, v). First, the graphs
in St,j are sequentially inputted into the GCN-LSTM to produce a final output
of ht−j . Then, MTL-Recurrent GCN computes

ht−j = ReLU(ht−j)

h1 = ReLU(W1 · ht−j + b1)

h2 = ReLU(W2 · (h1[u]⊕ h1[v]) + b2)

h3 = ReLU(W3 ·Dropout(h2) + b3)

ŷb = σ(W4 ·Dropout(h3) + b4)

ŷm = Softmax(W5 ·Dropout(h3) + b5).

(3)

Here, ŷb and ŷm are the outputs of the link prediction and leadtime prediction
tasks, respectively. ⊕ denotes the concatenation operator, and weights W and
biases b are learnable parameters. Note that leadtime prediction is a multiclass
classification task where each class is a possible leadtime window or the negative
class. The negative class denotes that the link will not form in the future. The
link prediction task is a binary classification task. We use hard parameter sharing
multi-task learning, meaning the fully connected (FC) layers for both tasks are
shared before the output layer, as it prevents overfitting [12].

This multi-task learning architecture has two advantages: performance im-
provements [1] and computational efficiency, as only one model is needed even
though there are multiple prediction tasks.

Finally, we define a custom loss function (Eq. 4) for training MTL-Recurrent
GCN that combines binary cross entropy and categorical cross entropy losses via
a weighted average:

L = β[yb · log(ŷb) + (1− yb) · log(1− ŷb)] + (1− β)[

p∑
i=0

ymi · log(ŷmi )], (4)



MTL-Recurrent GCN 5

where β is the weight hyperparameter and p is the number of possible leadtime
values.

In summary, MTL-Recurrent GCN learns graph features and temporal de-
pendencies from a sequence of a graphs and performs the classification tasks
with FC layers.

4 Experiments

4.1 Datasets

We conduct our experiments on a COVID-19 KG with three auxiliary datasets.
The main KG dataset is provided by the Oak Ridge National Laboratory as a
part of their 5th Annual Smoky Mountains Computational Sciences Data Chal-
lenge 2. This dataset contains a network of biomedical concepts nodes and re-
search paper nodes formed using the PubMed, Semantic MEDLINE, and CORD-
19 databases. The three relations present in the network are paper-concept edges
(paper references concept relation; epc’s), paper-paper edges (citation relation;
epp’s), and concept-concept edges (paper links two concepts relation; ecc’s). The
existence of ecc’s and when they will form are to be predicted.

The three auxiliary datasets we utilize are the Unified Medical Language
System (UMLS) API - for retrieving the names of the biomedical concepts in
the network - and the CORD-19 metadata dataset and the PubMed NCBI E-
utilities API - for retrieving the abstracts of the scientific papers in the network.

4.2 Preprocessing

We first drop all papers that are missing a valid publication date or a valid
abstract. We then drop all concepts that have zero associated papers as a result.
We remove epc’s and epp’s that stem from an invalidated paper node as well as
epc’s and ecc’s that stem from an invalidated concept node. We also remove ecc’s
that have no valid papers linking the two relevant concepts.

As only the publications dates of the papers are given, we assign dates to
the edges in the following manner: the date of a epc is the publication date
of the relevant paper, the date of a epp is the publication date of the citing
paper, and the date of a ecc is the publication date of the paper that links the
two relevant concepts (if more than one paper linking the concepts exists, the
earliest publication date is used).

We then create node feature vectors using a pretrained Google News Word2Vec
model with the papers’ abstracts and concepts’ names as input. For each doc-
ument, we generate a 300-dimensional Word2Vec [10] embedding for every one
of its words and take the term frequency-inverse document frequency (TF-IDF)
weighted average of them to get the document embedding. We then perform
dimensionality reduction using principal component analysis (PCA) to get a
32-dimensional feature vector for each node.

Finally, due to the network’s prohibitively large size, we employ the Forest
Fire sampler with a burning probability of 40% and an 85% reduction in the
number of nodes because of its ability to retain the original properties of the
graph [7].
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4.3 Analysis

The final network contains 42, 062 nodes and 1, 744, 025 edges. There are 11, 741
concept nodes and 30, 321 paper nodes. epc’s are the most prevalent with a total
of 1, 502, 372 of them in the network, followed by ecc’s with 146, 704 and epp’s
with 94, 967.

The disparity between the number of epc’s and the number of ecc’s is ex-
plained by the fact that a paper referencing multiple concepts does not neces-
sarily mean that all the referenced concepts are linked to each other by ecc’s.
For example, a paper references both “RNA” and “degrees Celsius”; however,
there does not exist an ecc between these two concepts as there is no substantial
association between them. Additionally, there are papers that only reference a
single concept, which makes extracting an ecc from them impossible.

The average node degree of the network is 41.46. Concept nodes have a much
higher average degree (152.95± 496.50) than paper nodes (55.81± 29.03); how-
ever, their degrees vary more. Additionally, a concept is referenced by an average
of 127.96± 456.17 papers while a paper references an average of approximately
49.55 ± 22.54 concepts. Fig 2a displays the degree distribution of the network,
and Fig 2b plots the formation dates of all the links in the network. The ma-
jority of new links were formed in 2020, which is expected due to the influx of
COVID-19 research.
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Fig. 2: Distributions of Network

4.4 Baseline Models

We compare the performance of MTL-Recurrent GCN to several link prediction
baseline models.

Heuristic Algorithms. We utilize the following link prediction heuristic al-
gorithms: Common Neighbors, Jaccard Coefficient, Preferential Attachment,
Adamic-Adar, and Resource Allocation [9,15]. For a node pair between which a
link is formed at time t with leadtime j, we extract the heuristics for the node
pair from Gt−j . For a node pair between which a link is not present with lead-
time j, we extract the heuristics for the node pair from GT−j , where T is the last
available timestep. We then train a logistic regression model on each heuristic.
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N2V. node2vec (N2V) generates node embeddings by feeding random walks
sequences on the graph into a word2vec model [6]. We generate 128 dimensional
node embeddings on the training graph Gc, where c is the cutoff date between
training and validation/testing dates, using node2vec and take the Hadamard
product of node pairs’ embeddings to train a 2-layer neural network model.

GCN. We utilize two different graph convolutional neural network (GCN) mod-
els as baselines: GCN and MTL-GCN. Both are standard GCN models with one
Chebyshev spectral graph convolutional layer. GCN performs a single task while
MTL-GCN performs multi-task learning using MTL-Recurrent GCN’s custom
loss function. For these models, the only graph inputted for predicting a link
formed at time t with leadtime j is Gt−j .

Recurrent GCN. Recurrent graph convolutional network (Recurrent GCN)
has the same architecture as MTL-Recurrent GCN; however, it forgoes the multi-
task learning and performs a single task only.

4.5 Experimental Setup

In our experiments, we set Chebyshev filter sizes k = 3, and manually set β = 0.6
(Eq. 4). For our input graph sequences St,j , the leadtime j ∈ {1, 12, 24, 36}
months, the length of time between graphs l = 12 months, and the number of
graphs α = 3.

All ecc’s formed between January 2019 and July 2020 are training, formed in
August 2020 are validation, and formed between September 2020 and May 2021
are testing sampled. Negative node pairs (i.e., concept nodes pairs without a link
by May 2021) are randomly sampled in equivalent numbers. In total, there are
45, 922 samples and a train : validation : test split of 82.3 : 7.4 : 10.3%. Every
sample is randomly assigned a leadtime j.

Our GCN and Recurrent GCN models are trained for 10 epochs with AUC
early stopping using the Adam optimizer, a learning rate of 0.001, and a dropout
value of 0.5 on a NVIDIA TITAN V GPU server. All models are implemented
using PyTorch.

4.6 Results

Table 1 summarizes the link and leadtime prediction performance of MTL-
Recurrent GCN along with the baseline models. Note that two separate models
are trained for all non-multi-task learning baselines: one for each task.

MTL-Recurrent GCN achieves that best link prediction performance out of
all the models in terms accuracy, AUC, recall, and F1 score; however, MTL-GCN
exhibits the best precision. This suggests that forcing the model to learn when
a link will form via a multi-task learning architecture also improves the model’s
ability to predict if a link will form.

Additionally, although the link prediction performance of Recurrent GCN is
slightly worse than that of MTL-Recurrent GCN, both give 1-2% AUC perfor-
mance gains compared to GCN and MTL-GCN, which suggests the effectiveness
of the recurrent architecture in learning temporal dependencies for link predic-
tion. In general, all four GCN models give appreciable link prediction AUC and
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Table 1: Prediction Results. Best results for each metric are bolded.

Model Link Prediction Leadtime Prediction

Accuracy AUC Precision Recall F1 AUC Accuracy

Common Neighbors 0.6682 0.7380 0.8173 0.4333 0.5664 0.5983 0.6192

Jaccard Coefficient 0.6880 0.7415 0.7984 0.5030 0.6171 0.6176 0.6257

Preferential Attachment 0.5276 0.5469 0.5627 0.2477 0.3440 0.4864 0.6274

Adamic-Adar 0.6608 0.7332 0.7983 0.4303 0.5592 0.5984 0.6194

Resource Allocation 0.5489 0.7071 0.6448 0.2175 0.3253 0.5909 0.6249

node2vec 0.7326 0.8043 0.8249 0.5905 0.6883 N\A N\A

GCN 0.8137 0.8994 0.8545 0.7562 0.8023 0.7640 0.5423

MTL-GCN 0.7802 0.9051 0.9019 0.6287 0.7409 0.7661 0.5516

Recurrent GCN 0.8141 0.9149 0.8890 0.7179 0.7944 0.8839 0.6653

MTL-Recurrent GCN 0.8335 0.9193 0.8508 0.8088 0.8293 0.7770 0.5603

F1 score performance gains of 11-13% and 7-19%, respectively, compared to the
best non-GCN baseline: node2vec.

Lastly, Recurrent GCN exhibits the best leadtime prediction AUC and accu-
racy out of all the models. We suspect that this is due to the model’s recurrent
architecture and its loss function being comprised solely of categorical cross en-
tropy loss.

5 Conclusions

In this paper, we present MTL-Recurrent GCN, a recurrent graph convolutional
neural network model for temporal link prediction that utilizes a multi-task
learning architecture. We also construct and analyze a COVID-19 KG of biomed-
ical concepts and research papers using data provided by the Oak Ridge National
Laboratory Smoky Mountains Computational Sciences Data Challenge and aux-
iliary textual data. Finally, we demonstrate MTL-Recurrent GCN’s ability to
outperform several baseline models at predicting novel links between biomedical
concepts within this KG.

Currently, the leadtime prediction is limited to a set number of classes. There-
fore, future works involves altering the multi-task learning models to allow for
leadtime regression. Additional future work involves grid searching β for our
custom loss function.
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