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ABSTRACT

Data-driven societal event forecasting methods exploit relevant his-

torical information to predict future events. These methods rely on

historical labeled data and cannot accurately predict events when

data are limited or of poor quality. Studying causal effects between

events goes beyond correlation analysis and can contribute to a

more robust prediction of events. However, incorporating causal-

ity analysis in data-driven event forecasting is challenging due to

several factors: (i) Events occur in a complex and dynamic social

environment. Many unobserved variables, i.e., hidden confounders,

affect both potential causes and outcomes. (ii) Given spatiotem-

poral non-independent and identically distributed (non-IID) data,

modeling hidden confounders for accurate causal effect estimation

is not trivial. In this work, we introduce a deep learning framework

that integrates causal effect estimation into event forecasting. We

first study the problem of Individual Treatment Effect (ITE) estima-

tion from observational event data with spatiotemporal attributes

and present a novel causal inference model to estimate ITEs. We

then incorporate the learned event-related causal information into

event prediction as prior knowledge. Two robust learning modules,

including a feature reweighting module and an approximate con-

straint loss, are introduced to enable prior knowledge injection. We

evaluate the proposed causal inference model on real-world event

datasets and validate the effectiveness of proposed robust learning

modules in event prediction by feeding learned causal information

into different deep learning methods. Experimental results demon-

strate the strengths of the proposed causal inference model for ITE

estimation in societal events and showcase the beneficial properties

of robust learning modules in societal event forecasting.
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· Information systems → Data mining; · Mathematics of

computing → Causal networks; · Computing methodologies

→ Neural networks.
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1 INTRODUCTION

Predicting societal events such as disease outbreaks, organized

crime, and civil unrest movements from social media streams and

news media is of great significance for decision-making and re-

source allocation. Previous approaches mainly focus on learning

fromhistorical data to improve the prediction accuracy of events [48].

Recently, to enhance model explainability, many approaches iden-

tify salient features or supporting evidence, such as precursor docu-

ments [28], relationships represented as graphs [10], and major ac-

tors participating in the events [11]. However, these works explain

the occurrence of events based on correlation-based indicators.

Attempts to study causality in event analysis and prediction

have focused on extracting pairs of causal events from unstruc-

tured text [31], or using human-defined causally related historical

events to predict events of interest [32]. Causal effect learning has

shown advantages in improving predictions in various machine

learning problems, such as recommender systems [5], disease diag-

nosis prediction [24], and computer vision tasks [7]. This suggests

the potential of causal effect learning for better prediction of soci-

etal events. Leveraging causal effects can presumably provide new

insights into causal-level interpretation and improve the robustness

of event prediction, e.g., less susceptible to noise in data. In this

study, we explore societal event forecasting methods with the help

of causal effect learning.

Traditionally, learning causal effects (aka treatment effects) from

observational data involves estimating the causal effects of a treat-

ment variable (e.g., medication) on an outcome variable (e.g., recov-

ery) given observable covariates (e.g., gender). In practice, there are

also unobserved covariates, i.e., hidden confounders, that affect both

treatment and outcome variables. For instance, consider a study to

evaluate the effectiveness of a medication. Gender as a covariate

affects whether a patient chooses to take the medication and the

corresponding outcome. The patient’s living habits can be hidden

confounders that affect both the patient’s medication and outcome.

Exploring hidden confounders allows for more accurate estimations

of treatment effects [17, 25, 26].

In this work, we formulate the problem of estimating treatment

effects in the context of societal events. Societal events can be classi-

fied into different types. Given a time window, we look at multiple

types of events (e.g., łappealž, łinvestigationž) at a location and

define treatment variables to be the detection of increased counts
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of these events compared to the previous time window. If the sud-

den and frequent occurrence of such events triggers some event of

interest, the implied causal effect can be used to guide and interpret

event predictions. We define the outcome as the occurrence of an

event of interest (e.g., łprotestž) at a future time. Both treatment

and outcome variables can be affected by hidden social factors (i.e.,

hidden confounders) that are difficult to explicitly capture due to

complex dependencies. Intuitively, exploring hidden confounders

can allow us to estimate causal effects more accurately. To this end,

we formulate our main research question as: can we build a robust

event predictive model by incorporating treatment effect estimation

with hidden confounder learning? There are some challenges in

solving this problem:

• Societal events have geographical characteristics and exhibit

a high degree of temporal dependency [11, 28]. Modeling spa-

tiotemporal information requires an in-depth investigation of the

dynamic spatial dependencies of societal events. However, few

studies have focused on modeling spatiotemporal dependencies

in causal effect learning, which poses a challenge for learning

causal effects from societal events.

• Events occur in a complex and evolving social environment.

Many unknown factors increase the difficulty of accurately esti-

mating causal effects of events. Moreover, events are often caused

by a variety of factors rather than a single determinant. Utilizing

causal effects to assist in event prediction is a new challenge.

We address the above challenges by first introducing the task of

Individual Treatment Effect (ITE) estimation from societal events.

ITE is defined as the expected difference between the treated out-

come and control outcome, where the outcome is the occurrence

of a future event (e.g., protest) at a specific place and time, and the

treatment is a change in some event (e.g., appeal) in the past. We

consider multiple treatments (e.g., appeal, investigation, etc.) with

the motivation that the underlying causes of societal events are

often complex. We model the spatiotemporal dependencies in learn-

ing the representations of hidden confounders to estimate ITEs. We

then present an approach to inject the learned causal information

into a data-driven predictive model to improve its predictive power.

Our contributions are summarized as follows:

• We introduce a novel causal inference model for ITE estimation,

which learns the representation of hidden confounders by captur-

ing spatiotemporal dependencies of events in different locations.

• We propose two robust learning modules for event prediction

that take as prior knowledge the information learned from the

causal inference model. Incorporating such modules can enable

event prediction models to be more robust to data noise.

We evaluate the proposed method against other state-of-the-art

methods on several real-world event datasets. Through extensive

experiments, we demonstrate the strengths of the proposed method

in treatment effect learning and robust event prediction.

2 RELATED WORK

2.1 Event Prediction

Event prediction focuses on forecasting events that have not yet

happened based on various social indicators, such as event occur-

rence rates and news reports. Related research has been conducted

in various fields and applications, such as disease outbreak simula-

tion [1], crime prediction [41] and civil unrest prediction [10, 28].

Machine learning models such as linear regression [4] and ran-

dom forests [19] were investigated to predict events of interest.

Time-series methods such as autoregressive models were studied

to capture the temporal evolution of event-related indicators [1].

With the increased availability of various data, more sophisticated

features have been shown effective in predicting societal events

such as topic-related keywords [48], document embedding [28],

word graphs [10] and knowledge graphs [11, 12]. More advanced

machine learning and deep learning-based models have emerged,

such as multi-instance learning [28], multi-task learning [49] and

graph neural networks [10, 11]. Given the spatiotemporal dependen-

cies of events, some existing research work studied spatiotemporal

correlations in event prediction [15, 40, 47]. However, few studies

explored the causality in event prediction. Our proposed model

incorporates causal effect learning in a spatiotemporal event predic-

tion framework. This gives us the benefit of discovering the effects

of different potential causes on predicting future events.

2.2 Individual Treatment Effect Estimation

Individual treatment effect (ITE) estimation refers to estimating the

causal effect of a treatment variable on its outcome. A wealth of

observational data facilitates treatment effect estimation in many

fields, such as health care [2] recommender systems [5], and com-

puter vision [7]. Existing methods for ITE estimation includes re-

gression and tree based model [8], counterfactual inference [18],

and representation learning [35]. These approaches rely on the Ig-

norability assumption [33], which is often untenable in real-world

studies. A deep latent variable model, CEVAE [25] learns represen-

tations of confounders through variational inference. Recent work

relaxed the Ignorability assumption and studied ITE estimation

from observational data with an auxiliary network in a static [17]

or dynamic environment [26]. In addition to the traditional causal

effect estimation, a new study of causal inference, including multi-

ple treatments and a single outcome, has emerged, namely, Multiple

Causal Inference. Researchers have shown that compared with tra-

ditional causal inference, it requires weaker assumptions [42]. ITE

estimation would considerably benefit decision-making as it can

provide potential outcomes with different treatment options. Our

work introduces ITE estimation to societal event studies and ex-

ploits event-related causal information for event forecasting.

2.3 Knowledge Guided Machine Learning

Purely data-driven approaches might lead to unsatisfactory results

when limited data are available to train well-performing and suf-

ficiently generalized models. Such models may also break natural

laws or other guidelines [37]. These problems have led to an increas-

ing amount of research that focuses on incorporating additional

prior knowledge into the learning process to improvemachine learn-

ing models. For example, logic rules [14] or algebraic equations [27]

have been added as constraints to loss functions. Knowledge graphs

are adopted to enhance neural networks with information about re-

lations between instances [3]. The growth of this research suggests

that the combination of data and knowledge-driven approaches is
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becoming relevant and showing benefits in a growing number of ar-

eas. Existing work has typically focused on pre-existing knowledge

obtained by human experts. However, such approaches fail when

prior knowledge is not available, e.g., for societal events. Some

researchers explored causal knowledge-guided methods in health

prediction [24] and image-to-video adaptation [7]. In this work, we

study causal effects between societal events and use the learned

causal information as prior knowledge for event prediction.

3 PROBLEM FORMULATION

The objective of this study is two-fold: (1) givenmultiple pre-defined

treatment events (e.g., appeal, investigation, etc.), estimate their

causal effect on a target event (i.e., protest) individually; (2) predict

the probability of the target event occurring in the future with

the help of estimated causal information. In the following, we will

introduce some important concepts, definitions and assumptions.

3.1 Observational Event Data

In this work, we focus on modeling the occurrence of one type of

societal event (i.e., łprotestž) by exploring the possible effects it

might receive from other types of events (e.g., łappealsž and łin-

vestigationž). A total of 𝐸 categories of societal events are stud-

ied. These events happen at different locations and times. We

use 𝑀,𝑇 to denote the sets of locations and timestamps of inter-

est, respectively. The observational event data can be denoted as

D =

{
{X≤𝑡

𝑖 , c≤𝑡𝑖 , 𝑦𝑡+𝛿𝑖 , }𝑀𝑖=1,A
}
𝑡 ∈𝑇

, where X≤𝑡
𝑖 , c≤𝑡𝑖 , 𝑦𝑡+𝛿𝑖 denote

the pre-treatment covariates/features, observed treatments, and

outcome, respectively. A ∈ R𝑀×𝑀 represents the connectivity of

𝑀 locations, where each element can denote a fixed geographic

distance or the degree of influence of events between locations.

Covariates: We define the covariates X≤𝑡
𝑖 = (x𝑡−Δ+1𝑖 , ..., x𝑡𝑖 ) ∈

R
𝐸×Δ to be the historical events at location 𝑖 with size Δ up to time

𝑡 . x𝑡𝑖 ∈ R𝐸 is a vector representing the frequencies of 𝐸 types of

events that occurred at location 𝑖 at time 𝑡 .

Treatments: The treatments c≤𝑡𝑖 ∈ {0, 1}𝐸 can be represented

by a binary vector with dimension 𝐸 where each element indicates

the occurrence state of a type of event (e.g., appeal). Specifically, the

𝑗-th element 𝑐≤𝑡
𝑖 ( 𝑗)

= 1 indicates a notable (i.e., 50%) increase of the

𝑗-th event type at window [𝑡 − Δ + 1, 𝑡] from the previous window

[𝑡 − 2Δ + 1, 𝑡 − Δ]. A value of 1 means getting treated and 0 means

getting controlled. For convenience, we refer to each element in

the treatment vector as a treatment event.1

Observed Outcome: The observed/factual outcome 𝑦𝑡+𝛿𝑖 ∈

{0, 1} is a binary variable denoting if a target event (i.e., protest)

occurs at location 𝑖 in the future (𝑡 + 𝛿). 𝛿 ≥ 1 is the lead time

indicating the number of timestamps in advance for a prediction.

3.2 Individual Treatment Effects Learning

We first define potential outcomes in observational event data fol-

lowing well-studied causal inference frameworks [34]. We ignore

the location subscript 𝑖 for simplicity unless otherwise stated.

Potential Outcomes: In general, the potential outcome 𝑌 (𝐶)

denotes what the outcome an instance would receive, if the instance

1Our setup differs from multiple causal inference [42], which estimates the potential
outcome of a combination of multiple treatments. We are more interested in studying
the potential outcome of each element in the treatment vector.

y
t+δ

c
≤t

A z
≤t

X
≤t

Figure 1: Causal graph defined for ITE estimation on ob-

servational event data. Edges represent causal relations.

X≤𝑡 , 𝑐≤𝑡 , z≤𝑡 , 𝑦𝑡+𝛿 denote covariates, assignment for a treat-

ment event, hidden confounders before time 𝑡 , and outcome

at time 𝑡 + 𝛿 , respectively. A denotes the connectivity of loca-

tions.

Figure 2: An example of ITE estimation on observational

event data. X-axis indicates time and bars indicate the counts

of events in a location. Assuming appeal is the treatment vari-

able, the treated and controlled scenarios denote whether the

amount of appeal events in the current window (on average)

is greater or less than the previous window. Orange bars indi-

cate counts of appeal events. Outcomes denote whether the

protest will occur at a future time given each treatment as-

signment. ITE is estimated from the two potential outcomes.

were to take treatment𝐶 . A potential outcome𝑌 (𝐶) is distinct from

the observed/factual outcome 𝑌 in that not all potential outcomes

are observed in the real world. In our problem, there are two poten-

tial outcomes for each treatment event. Given a location at time 𝑡 +𝛿

and the 𝑗-th treatment event, we denote by 𝑦𝑡+𝛿
( 𝑗)

(1) the potential

outcome (i.e., occurrence of protest) if the 𝑗-th treatment event is

getting treated, i.e., 𝑐≤𝑡
( 𝑗)

= 1. Similarly, we denote by 𝑦𝑡+𝛿
( 𝑗)

(0) the

potential outcome we would observe if the treatment event is under

control, i.e., 𝑐≤𝑡
( 𝑗)

= 0.

The factual outcome is 𝑦𝑡+𝛿 when the location has already re-

ceived the treatment assignment before time 𝑡 . The counterfactual

outcome is defined if the location obtains the opposite treatment as-

signment. In the observational study, only the factual outcomes are

available, while the counterfactual outcomes can never be observed.

The Individual Treatment Effect (ITE) is the difference between

two potential outcomes of an instance, examining whether the

treatment affects the outcome of the instance. In observational

event data, for the 𝑗-th treatment event, we formulate the ITE for

the location at time 𝑡 + 𝛿 in the form of the Conditional Average

Treatment Effect (CATE) [26, 35]:

𝜏𝑡+𝛿
( 𝑗)

= E[𝑦𝑡+𝛿
( 𝑗)

(1) − 𝑦𝑡+𝛿
( 𝑗)

(0) |X≤𝑡 ,A] . (1)

We provide a toy example to illustrate ITE estimation on observa-

tional event data, as shown in Fig. 2.
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In this study, we aim to estimate ITEs and then use them for event

prediction. The challenge of ITE estimation lies in how to estimate

the missing counterfactual outcome. Our estimation of ITE is built

upon some essential assumptions. For simplicity and readability,

we omit the subscripts for the location 𝑖 and the treatment event 𝑗

and use 𝑐≤𝑡 to represent the 𝑗-th treatment event.

Assumption 1. No Interference. Assuming that one instance is

defined as a location at a time in observational event data, the poten-

tial outcome on one instance should be unaffected by the particular

assignment of treatments on other instances.

Assumption 2. Consistency. The potential outcome of treatment

𝑐≤𝑡 equals to the observed outcome if the actual treatment received

𝑐≤𝑡 , i.e., 𝑦𝑡+𝛿 (𝑐≤𝑡 ) = 𝑦𝑡+𝛿 .

Assumption 3. Positivity. If the probability P(X≤𝑡 ,A) ≠ 0, then

the probability to receive treatment assignment 0 or 1 is positive, i.e.,

0 < P(𝑐≤𝑡 = 1|X≤𝑡 ,A) < 1, 𝑐≤𝑡 ∈ {0, 1}.

The Positivity assumption indicates that before time 𝑡 , each

treatment assignment has a non-zero probability of being given

to a location. This assumption is testable in practice. In addition

to these assumptions, most existing work [25, 35, 39] relies on

the Ignorability assumption, which assumes that all confounding

variables are observed and reliably measured by a set of features

for each instance, i.e., hidden confounders do not exist.

Definition 1. Ignorability Assumption. Given pre-treatment

covariatesX≤𝑡 , the outcome variables are independent of its treatment

assignment, 𝑦𝑡+𝛿 (0), 𝑦𝑡+𝛿 (1) ⊥⊥ 𝑐≤𝑡 |X≤𝑡 .

However, this assumption is untenable in societal event stud-

ies due to the complex environment in which societal events oc-

cur. We relax this assumption by introducing the existence of hid-

den confounders [17]. Note that hidden confounders are unob-

served in observational event data but will be learned in our ap-

proach through a spatiotemporal model. We define a causal graph,

as shown in Fig. 1. The hidden confounders z≤𝑡 causally affect

the treatment and outcome.2 The potential outcomes are indepen-

dent of the observed treatment, given the hidden confounders:

𝑦𝑡+𝛿 (0), 𝑦𝑡+𝛿 (1) ⊥⊥ 𝑐≤𝑡 |z≤𝑡 . In addition, we assume the features

X≤𝑡 and the connectivity of locations A are proxy variables for

hidden confounders z≤𝑡 . Unobservable hidden confounders can

be measured with X≤𝑡 and A. Based on the temporal and spatial

characteristics of our observational event data. We introduce the

following assumption [26]:

Assumption 4. Spatiotemporal Dependencies in Hidden Con-

founders. In observational event data, hidden confounders capture

spatial information among locations, reflected by A, and show tem-

poral dependencies of events across multiple historical steps (i.e., Δ).

Note that this assumption does not contradict the No Interference

assumption. We focus on the scenario in which spatiotemporal

information can be exploited to control confounding bias.

2For the 𝑗 -th treatment event, the hidden confounders can be written as z≤𝑡
( 𝑗 )

.

3.3 Event Prediction

Definition 2. Traditional Event Prediction. Learn a classifier

that predicts the probability of the target event occurring at a location

at time 𝑡 + 𝛿 based on available data: P(𝑦𝑡+𝛿 |X≤𝑡 ,A).

Instead of learning a mapping function from input features to

event labels, we are interested in estimating treatment effects under

different treatment events individually and exploiting such causal

information to enhance event prediction.

Definition 3. Event PredictionwithCausalKnowledge. Build

an event forecaster using available data with causal information

as prior knowledge: P
(
𝑦𝑡+𝛿 |X≤𝑡 ,A, C(X≤𝑡 , c≤𝑡 ,A)

)
, where C is the

trained causal inference model that takes features, multiple treatments

and the connectivity information of locations as input and outputs

potential outcomes.

The multiple treatment setting (i.e., c≤𝑡 ) aims to produce infor-

mative causal knowledge to assist event prediction. We will discuss

the proposed method of event prediction with causal knowledge in

the following sections.

4 METHODOLOGY

We propose a novel framework CAPE, which incorporates causal

inference into the prediction of future event occurrences in a spa-

tiotemporal environment. In our framework, ITEs with different

treatment events are jointly modeled in a spatiotemporal causal

inference model. It will contribute to the final event prediction by

feeding the causal output (e.g., potential outcomes) to a non-causal

data-driven prediction model. The overall framework, as illustrated

by Fig. 3, consists of two parts: (1) causal inference and (2) event

prediction. The causal inference component is designed to estimate

ITEs, including two essential modules: hidden confounder learn-

ing and potential outcome prediction. For each treatment event, it

learns the representation of hidden confounders by capturing spa-

tiotemporal dependencies and outputs the potential outcomes under

different treatment assignments. The event prediction part com-

prises two robust learning modules, a feature reweighting module

and an approximation constraint loss. They take the causal infor-

mation learned from the causal inference model as prior knowledge

to assist the training of a data-driven event prediction model. Next,

we will elaborate on these components.

4.1 Causal Inference

4.1.1 Hidden Confounder Learning. Hidden confounders are

common in real-world observational data [30]. Assuming spatiotem-

poral dependencies exist in hidden confounders, we introduce a

novel and effective network that models spatial and temporal in-

formation for each location at each time step. It consists of several

temporal feature learning layers and spatial feature learning layers.

Our network is based on the success of previous work [9, 29]. It

is designed to be adaptable to a multi-task setting to learn hidden

confounders of multiple treatments.

Temporal Feature Learning. Dilated casual convolution net-

works [46] handle long sequences in a non-recursive manner, which

facilitates parallel computation and alleviates the gradient explosion

problem. Gating mechanisms have shown benefits to control infor-

mation flow through layers for convolution networks [9, 29, 43].
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Figure 3: The overall architecture of the proposed framework. The proposed causal inference method estimates ITEs in the

presence of multiple treatment events. The representation of hidden confounders is learned from a spatiotemporal model.

Then, the representation of hidden confounders corresponding to each treatment event is fed into two neural networks (NNs)

for ITE estimation. Next, the framework takes the output of the causal inference model as prior knowledge to forecast events.

We employ the dilated causal convolution with a gating mechanism

in temporal feature learning to capture a location’s temporal depen-

dencies. For a location before time 𝑡 , the multivariate time series of

historical event occurrences is a matrix X≤𝑡 ∈ R𝐸×Δ, where each

row indicates the frequency sequence of one type of event in the his-

torical window with size Δ. We use a linear transformation to map

the event frequency matrix into a latent space, i.e., X′≤𝑡 ∈ R𝑑𝑠×Δ.

𝑑𝑠 indicates the feature dimension in the latent space. Then, we

apply the dilated convolution to the sequence. For simplicity, we

use r ∈ RΔ to denote a row in the matrixX′≤𝑡 . Formally, for the 1-D

sequence input r and a filter 𝚪 ∈ R𝐾 , the dilated causal convolution

operation on element 𝑠 of the sequence is defined as:

(r ∗𝑑 𝚪) (𝑠) =

𝐾−1∑︁

𝑘=0

𝚪(𝑘)r(𝑠 − 𝑑 · 𝑘), (2)

where ∗𝑑 is a 𝑑-dilated convolution. 𝐾 is the filter size. (𝑠), (𝑘), (𝑠 −

𝑑 · 𝑘) are indices of vectors. (r ∗𝑑 𝚪) is the output vector.

We further incorporate a gated dilated convolutional layer which

consists of two parallel dilated convolution layers:

h = tanh(r ∗𝑑 𝚪1) ⊙ 𝜎 (r ∗𝑑 𝚪2), (3)

where 𝚪1, 𝚪2 are filters for dilated convolutional layers, and ⊙ is

the Hadamard product. tanh(·) is to regularize the features. 𝜎 (·)

is the sigmoid function that determines the ratio of information

passed to the next layer. Specifically, we stack multiple gated dilated

convolutional layers (Eq. 3) with increasing dilation factors (e.g.,

𝑑 = 1, 2, 4). Residual and skip connections are applied to avoid

the vanishing gradient problem [29, 43]. To this end, the temporal

dependencies are captured, and we use H𝑡 ∈ R𝑀×𝑑𝑠 to denote the

learned temporal features for𝑀 locations at time 𝑡 .

Spatial Feature Learning. Graph convolution is a powerful opera-

tion to learn representations of nodes given the graph structure. To

capture the spatial dependencies, we adopt the graph convolutional

network (GCN) [22] to learn the spatial influence from locations

by treating each location as a node in graph:

G𝑡 = ReLU(A′H𝑡W𝑔), (4)

where W𝑔 is the weight matrix for a GCN layer. G𝑡 denotes the

spatiotemporal feature matrix referring to all locations, where each

row g𝑡 captures the historical information of a specific location

as well as the neighboring locations. A′ is a learnable adjacency

matrix. The geographical adjacency matrix of locations usually

cannot represent the connectivity of locations in the context of

societal event forecasting. Therefore, we adopt the self-adaptive

adjacency matrix [43], which does not require any prior knowledge

and is learned through training. We randomly initialize two node

embedding matrices with learnable parameters E1, E2 ∈ R𝑀×𝑑𝑎 .

The self-adaptive adjacency matrix is defined as:

A′
= Softmax

(
ReLU(E1E

𝑇
2 )
)
, (5)

where the ReLU activation function eliminates weak connections

and the Softmax applies normalization.

Hidden Confounder Representation Learning. To learn the

representation of hidden confounders, we utilize the spatiotemporal

feature and a learnable embedding specific to each treatment event

(i.e., v( 𝑗) , 1 ≤ 𝑗 ≤ 𝐸). It is worth pointing out that in our framework,

we include multiple treatment events and expect to estimate the ITE

corresponding to each treatment event. The treatment-specific em-

bedding aims to capture latent information of each treatment event

and distinguish the hidden confounder representations learned for

each treatment effect learning task. Similar ideas of task embed-

dings are studied in prior work [38]. Given a location and a time 𝑡 ,

the representation of hidden confounders for the 𝑗-th treatment is:

z≤𝑡
( 𝑗)

= g𝑡 ⊕ v( 𝑗) , (6)

where ⊕ is concatenation.

4.1.2 Potential Outcome Prediction. Using the above compo-

nents, we obtain the representation of hidden confounders z≤𝑡
( 𝑗)

.

Following the predefined causal graph in Fig. 1, the learned hid-

den confounders can be used to estimate potential outcomes. We

use two networks that output two potential outcomes of the 𝑗-th

treatment event, respectively:

𝑦𝑡+𝛿
( 𝑗)

(1) = Φ
1
( 𝑗)

(
z≤𝑡
( 𝑗)

)
, 𝑦𝑡+𝛿

( 𝑗)
(0) = Φ

0
( 𝑗)

(
z≤𝑡
( 𝑗)

)
, (7)

where 𝑦𝑡+𝛿
( 𝑗)

(1/0) denotes the inferred potential outcome when the

𝑗-th treatment event is getting treated or controlled. Φ1
( 𝑗)

(·),Φ0
( 𝑗)

(·)

are parameterized by deep neural networks with a sigmoid function

at the last layer. The networks are trained end-to-end, and one can

estimate the potential outcomes under multiple treatment events.

4.1.3 Objective Function. We use the binary cross-entropy loss

as the objective factual loss for predicting potential outcomes.When
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only the 𝑗-th treatment event is considered (i.e., the general case

for treatment effect learning [17, 26, 35]), the factual loss is:

Lfact
( 𝑗)

= −
∑︁

𝑡 ∈𝑇

∑︁

𝑖∈𝑀

𝑦𝑡+𝛿𝑖 log𝑦𝑡+𝛿
𝑖 ( 𝑗)

+ (1 − 𝑦𝑡+𝛿𝑖 ) log
(
1 − 𝑦𝑡+𝛿

𝑖 ( 𝑗)

)
, (8)

where 𝑦𝑡+𝛿𝑖 is the observed outcome for location 𝑖 at time 𝑡 + 𝛿 .

𝑦𝑡+𝛿
𝑖 ( 𝑗)

= 𝑦𝑡+𝛿
𝑖 ( 𝑗)

(𝑐≤𝑡
𝑖 ( 𝑗)

) is the predicted outcome given the observed

treatment 𝑐≤𝑡
𝑖 ( 𝑗)

∈ {0, 1}. Since our model predicts potential out-

comes for multiple treatment events, we express the total factual

loss as follows:

Lfact
=

∑︁

1≤ 𝑗≤𝐸

Lfact
( 𝑗)

+ 𝜂 · Ω(Θ), (9)

where Ω(Θ) stands for the ℓ2-norm regularization for all training

parameters and 𝜂 is the weight for scaling the regularization term.

Representation Balancing. Studies have proved that balancing

representations of treated and control groups would help mitigate

the confounding bias and minimize the upper bound of outcome in-

ference errors [18, 35]. Therefore, we incorporate a representation

balancing layer to force the distributions of hidden confounders of

treated and controlled groups to be similar. Specifically, we adopt

the integral probability metric (IPM) [35] to measure the differ-

ence between the distributions of treated instances and controlled

instances in terms of their hidden confounder representations:

Ldisc
= 𝛼 · IPM(Z1,Z0), (10)

where Z1 = {z≤𝑡
𝑖 ( 𝑗)

}𝑖,𝑡, 𝑗 :𝑐≤𝑡
𝑖 ( 𝑗 )

=1,Z0 = {z≤𝑡
𝑖 ( 𝑗)

}𝑖,𝑡, 𝑗 :𝑐≤𝑡
𝑖 ( 𝑗 )

=0 indicate the

sets of hidden confounders for samples (in a batch) in the treated

group and the controlled group, respectively. The IPM can be

Wasserstein or Maximum Mean Discrepancy (MMD) distances. 𝛼

is a hyperparameter that indicates the imbalance penalty.

Formally, we present the loss function of the proposed causal

inference model as Lcau
= Lfact + Ldisc.

4.2 Event Prediction with Causal Knowledge

To improve the robustness of event predictions with imperfect real-

world data, we incorporate causal information output by the causal

inference model as priors to forecast future events. We introduce

two robust learningmodules into the training of event predictors: (1)

feature reweighting, which involves causal information to weight

the original input features to obtain causally enhanced features, and

(2) approximation constraints, which use the predicted potential

outcomes as value range constraints applied to event prediction

scores. Next, we introduce these two modules in detail.

4.2.1 FeatureReweighting. Feature reweightingwas introduced

in object detection [20], where a reweighting vector is learned to

indicate the importance of meta features for detecting objects. Here,

we introduce a new feature reweighting method that leverages

causal information.We use ITEs estimated from the causal inference

model to reweight the event frequency features to predict events.

Causal Feature Gates. We define a feature gate based on ITEs

calculated using predicted potential outcomes from the causal in-

ference model. For the 𝑗-th treatment event, the estimated ITE of a

location at time 𝑡 + 𝛿 is as follows:

𝜏𝑡+𝛿
( 𝑗)

= 𝑦𝑡+𝛿
( 𝑗)

(1) − 𝑦𝑡+𝛿
( 𝑗)

(0). (11)

When considering multiple treatment events, we obtain the ITE

vector 𝝉𝑡+𝛿 ∈ R𝐸 , where each dimension refers to a treatment event.

The linear layer 𝑓𝜏 is then applied to model the association between

the effects of different treatment events:

𝜷𝑡+𝛿 = 𝜎
(
𝑓𝜏 (𝝉

𝑡+𝛿 )
)
, (12)

where 𝜷𝑡+𝛿 ∈ R𝐸 is the gating variables that will be applied to the

original event frequency features. The sigmoid function 𝜎 converts

the gating variable into a soft gated signal with a range of (0, 1).

Reweighting Feature. We reweight the event frequency features

using the gating variables defined above. It is worth emphasizing

that the event frequency vector x𝑡 has the same dimension as 𝜷𝑡+𝛿 ,

and their corresponding elements represent the same event type.

Nevertheless, we prefer not to apply the gating variables directly to

the feature vector. ITE examines whether the binary treatment vari-

able affects the outcome of an instance, while the event frequency

vector includes discrete numbers. Thus, we transform the event

frequency feature into a latent vector using a position-wise feed-

forward network (FFN) [36]. It maps the features into a continuous

space, assuming that the gating variables can be aligned with the

variables in this space. The formal procedure is as follows:

FFN(x𝑡 ) = ReLU
(
x𝑡W𝑟0 + b𝑟0

)
W𝑟1 + b𝑟1 , (13)

x̃𝑡 = FFN(x𝑡 ) ⊙ 𝜷𝑡+𝛿 + x𝑡 , (14)

where {W, b}{𝑟0,𝑟1 } are learnable parameters. A residual connection

is added to ensure that the causally weighted elements still con-

tain some original information. We denote the causality enhanced

features across Δ historical steps as X̃≤𝑡 ∈ R𝐸×Δ. Such features

are fed into a predictor to perform event prediction. We denote the

estimated event probability at time 𝑡 + 𝛿 as 𝑝𝑡+𝛿 = P(X̃≤𝑡 ,A).3

4.2.2 ApproximationConstraints. The approximation constraints

method was proposed to limit the reasonable range of the target

variable during the model training process to generate a more ro-

bust model [27]. We follow this idea and propose a new method

of integrating learned causal information into variable constraints.

We first obtain the event prediction 𝑝𝑡+𝛿 from P. Then, we assume

that the causal range of the target variable, i.e., the event prediction,

is 𝑝𝑡+𝛿 ∈ [𝑙𝑡+𝛿 , 𝑢𝑡+𝛿 ]. The sample-wise boundaries are defined as:

𝑙𝑡+𝛿 = Min
(
ŷ𝑡+𝛿 (·)

)
, 𝑢𝑡+𝛿 = Max

(
ŷ𝑡+𝛿 (·)

)
, (15)

where ŷ𝑡+𝛿 (·) = {𝑦𝑡+𝛿
( 𝑗)

(1), 𝑦𝑡+𝛿
( 𝑗)

(0) |1 ≤ 𝑗 ≤ 𝐸} is the set of potential

outcomes for all treatment events. The minimum and maximum

values are considered the lower and upper limits of the target vari-

able for a given sample. Based on the range obtained from causal

knowledge, we define a constraint loss term:

Lcstr
=

∑︁

𝑡 ∈𝑇

∑︁

𝑖∈𝑀

ReLU
(
𝑙𝑡+𝛿𝑖 − 𝑝𝑡+𝛿𝑖

)
+ ReLU

(
𝑝𝑡+𝛿𝑖 − 𝑢𝑡+𝛿𝑖

)
. (16)

The loss term can be involved during the training of the predictor P.

Given the proposed robust learning modules for event prediction,

we train the predictor by minimizing the following loss function:

Levt
= Lpred + 𝜇 · Lcstr, (17)

where Lpred is the loss function defined by the predictor P that

minimizes the difference in event prediction 𝑝𝑡+𝛿𝑖 and ground truth

event occurrence 𝑦𝑡+𝛿𝑖 . 𝜇 is a hyperparameter.

5 EXPERIMENTAL EVALUATION

We aim to answer the following research questions:RQ1: How well

does CAPE estimate ITEs in observational event data? RQ2: Can

3𝑝𝑡+𝛿 = P(X≤𝑡 ,A) when feature reweighting is not applied.
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Table 1: Dataset statistics.𝑀 is the number of locations. Posi-

tive indicates the ratio of positive samples, i.e., the protest

event has occurred. Location represents the geographical

level of events. For India, we select top locations based on the

total number of events. Time Units is the time granularity

of each timestamp when constructing the sample.

Dataset 𝑀 Positive Location Time Time Unit Source

India 14 30.1% State 2000-2017 3 days ICEWS
Nigeria 6 65.7% Geopolitical

zone
2015-2020 1 day GDELT

Australia 8 44.4% State 2015-2020 1 day GDELT
Canada 13 26.8% State 2015-2020 1 day GDELT

CAPE improve the robustness of event prediction? RQ3: What

causal information can we learn from studies of causally related

event prediction?4 We will introduce the experimental setup and

discuss the experimental results for addressing the above questions.

5.1 Datasets

Experimental evaluation is conducted on two data sources: Inte-

grated Conflict Early Warning System (ICEWS) [6], and Global

Database of Events, Language, and Tone (GDELT) [23]. These two

data sources include daily events encoded from news reports. For

event data from GDELT, we only select root events identified in

news reports. We construct event datasets for four countries, i.e.,

India, Nigeria, Australia and Canada, based on their large vol-

ume of events. Events are categorized into 20 main categories (e.g.,

appeal, protest, etc.) according to Conflict and Mediation Event Ob-

servations (CAMEO) [6]. Each event is encoded with geolocation,

time, category, etc. We focus on predicting one category of event:

protest, as the target variable, and using historical data of all event

types as feature variables. Data statistics are shown in Table 1.

5.2 Evaluation Metrics

For the ITE estimation, since there are no ground truth coun-

terfactual outcomes, we report the ATT error 𝜖ATT = |ATT −

ES [𝑦
𝑡+𝛿 (1) − 𝑦𝑡+𝛿 (0) |𝑐≤𝑡 = 1] | [35], where ATT is the true av-

erage treatment effect on the treated, i.e., ATT = ES [𝑦
𝑡+𝛿 |𝑐≤𝑡 =

1] − ES [𝑦
𝑡+𝛿 |𝑐≤𝑡 = 0]. S denotes the subset of samples simulat-

ing a randomized controlled trial. Specifically, given the treatment

event, we employ a 1-nearest neighbor algorithm [44] to find a

matching control instance (without replacement) for each treated

instance. Euclidean distance is adopted to measure feature vectors.

The matching process is performed for each location.

We quantify the performance of event predictions based on Bal-

anced Accuracy (BACC), i.e, BACC = (TPR + TNR)/2. TPR and

TNR are the true positive rate and true negative rate, respectively.

BACC is a good metric when the classes are imbalanced.

5.3 Comparative Methods

For the ITE estimation, we compare our causal inference model, no-

tated as CAPEC , with two groups of baselines: (i) Tree based meth-

ods: Bayesian Additive Regression Trees (BART) [8] and Causal

4Results are in the appendix.

Table 2: ITE estimation results showing the mean and stan-

dard deviation of ATT errors on all datasets with treatment

event being Appeal. Lower is better.

India Nigeria Australia Canada

BART .114 ± .012 .024 ± .015 .034 ± .018 .035 ± .017
CF .112 ± .011 .034 ± .015 .038 ± .021 .038 ± .016
CFR-MMD .014 ± .012 .020 ± .013 .016 ± .011 .017 ± .010
CFR-WASS .021 ± .010 .025 ± .016 .019 ± .013 .012 ± .009
CEVAE .012 ± .007 .018 ± .014 .018 ± .011 .017 ± .016
SITE .013 ± .009 .019 ± .015 .012 ± .008 .016 ± .013
Net-Deconf .034 ± .027 .030 ± .017 .022 ± .023 .034 ± .020

CAPEC .011 ± .008 .010 ± .007 .010 ± .007 .008 ± .006
CAPEC−𝐺 .019 ± .009 .019 ± .011 .019 ± .008 .016 ± .011
CAPEC−𝑇 .011 ± .009 .027 ± .021 .013 ± .010 .011 ± .007
CAPEC−𝐵 .018 ± .012 .026 ± .013 .020 ± .013 .019 ± .012

Forest (CF) [39]; (ii) Representation learning based methods: Coun-

terfactual regression with MMD (CFR-MMD) [35] andWasserstein

metric (CFR-WASS) [35], Causal Effect Variational Autoencoder

(CEVAE) [25], Network Deconfounder (Net-Deconf) [17], and

Similarity Preserved Individual Treatment Effect (SITE) [45].

We study three variants of our model to examine the impact of

different components in our model: (i) CAPEC−𝐺 which removes

the spatial feature learning. (ii) CAPEC−𝑇 which replaces the tem-

poral feature learning with a simple linear transformation. (iii)

CAPEC−𝐵 removes the loss term Ldisc.

To evaluate the effectiveness of proposed robust learning mod-

ules in event prediction, we adopt two spatiotemporal models as

the predictor P: (i) Cola-GNN [13]: A graph-based framework

for long-term Influenza-like illness prediction; (ii) GWNet [43]:

A state-of-the-art spatiotemporal graph model for traffic predic-

tion. Given the spatiotemporal characteristics of societal event data,

these models can be well applied to our problem. Note that we do

not adopt protest event prediction models [10, 12] because they

handle more complex data, such as text and knowledge graphs. We

leave the causal exploration of such complex data to future work.

6 EXPERIMENTAL RESULTS

6.1 Results of ITE Estimation (RQ1)

To evaluate the effectiveness of our proposed causal inference frame-

work, we limit the number of treatment events to be one and com-

pare our model with other baselines. We report the ATT errors for

the treatment event appeal in Table 2. The motivation is that appeal

might be a potential cause of protests, as it expresses a serious or

urgent request, typically to the public. The results show that tree-

based models performs worse than representational learning-based

models. This finding highlights the benefits of representation learn-

ing in estimating ITEs for observational event data.CFR-MMD and

CFR-WASS learn a balanced representation such that the induced

treated and control distributions look similar. Both models achieved

good results in most cases, demonstrating the importance of control-

ling for representation distributions to predict potential outcomes.

CEVAE learns latent variables based on variational autoencoders

and SITE focuses on capturing local similarities to estimate ITEs.

These two models present the most stable and relatively small ATT

errors in all settings. This suggests that learning latent variables

and considering similarity information are useful for estimating
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(a) India (b) Nigeria

Figure 4: BACC value of event prediction when varying the

noise level in validation and test sets. Higher is better.

ITEs for observational event data. Net-Deconf learns hidden con-

founders by leveraging network/spatial information. However, it

does not outperform representation-based baselines. This may be

because the model was designed for semi-synthetic datasets and the

spatial characteristics of observational event data are different from

the network used in the original paper. Our proposed causal infer-

ence framework learns hidden confounders while capturing spatial

and temporal information and achieves the best performance. For

our model variants, we observe that removing the representation

balancing makes the results worse. Ignoring the temporal or spa-

tial feature learning can also deteriorate the results. This reflects

possible spatiotemporal dependencies underlying the hidden con-

founders, and demonstrates the capability of our model in capturing

the spatiotemporal information from observational event data.

6.2 Robustness Tests in Event Prediction (RQ2)

Here, we perform two robustness tests on event prediction and

conduct a case study on the proposed feature reweighting module.

6.2.1 Robustness to Test Noise. A model is considered to be

robust if its output variable is consistently accurate when one or

more input variables drastically change due to unforeseen circum-

stances. In this setting, we add Poisson noise into the validation and

test sets while keeping the training data noise-free. We aim to ver-

ify whether our method guarantees good prediction performance

when test input features are biased. We vary the rate parameter

(aka expectation) of the Poisson distribution from 1 to 25 and pro-

vide the comparison results for different noise levels in Fig 4. We

notice that training with the proposed robust learning module leads

to higher average BACC results and lower variance over multiple

runs. In most cases, the feature reweighting module (+F) contributes

more in improving prediction results. Incorporating these two mod-

ules (+F+L) can lead to better overall results. The results suggest

that the learned causal information is beneficial for improving the

robustness of predictions.

6.2.2 Robustness to Training Noise. Human errors or machine

failures in real-world data collection usually reduce data accuracy.

With this motivation, we assume that only training data are biased

and test whether our method can achieve decent event prediction

results on unbiased test data. As shown in Fig. 5, applying robust

learning modules can help the prediction model achieve better

(a) India (b) Nigeria

Figure 5: BACC value of event prediction when varying the

noise level in the training set. Higher is better.

(a) Sample 1 (b) Sample 2

Figure 6: Distributions of original, noisy, and reweighted

features of corrupted samples on the India dataset.

results in BACC when the noise level increases. Adding the ap-

proximation constraint loss (+L) can lead to a higher BACC than

adding the two modules (e.g., Fig. 5b). The results also illustrate

that even with biased data (with corrupted features), the trained

causal inference model learns valuable information that contributes

to the event prediction.

6.2.3 Case Study of Feature Reweighting. To illustrate the

functionality of the feature reweighting on robust event prediction,

we provide two examples in the India dataset, as shown in Fig. 6. We

useCola-GNN for analysis, given themore apparent improvements

when it is applied with the feature reweighting module. Specifically,

we first train an event prediction model on the India dataset using

Cola-GNN with the feature reweighting module. We select two

corrupted test samples with random noise added to their input

features (noise level of 5). We visualize the original features, the

noisy features, and the ones obtained from the feature reweighting

module. We observe that the reweighted features can encode similar

patterns of original features. It highlights the advantages of the ITEs

used in the feature reweighting module and demonstrates its ability

to capture crucial information underlying the data distribution.

7 CONCLUSION AND FUTUREWORK

Learning causal effects of societal events is beneficial to decision-

making and helps practitioners understand the underlying dynam-

ics of events. In this paper, we introduce a deep learning framework

that can estimate the causal effects of societal events and predict

societal events simultaneously. We design a novel spatiotempo-

ral causal inference model for estimating ITEs and propose two

robust learning modules that use the learned causal information
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as prior knowledge for societal event prediction. We conducted

extensive experiments on real-world event datasets and showed

that our approach achieves the best results in ITE estimation and

robust event prediction. One future direction is to examine other

potential causes of event occurrence, such as events with specific

themes and potentially biased media coverage.

8 BROADER IMPACTS

This work aims to advance computational social science by inves-

tigating causal effects among societal events from observational

data. Causal effects among different types of societal events have

not been extensively studied. In this work, we provide preliminary

results on estimating the individual causal effects of one type of

event on another and incorporate this causal information to im-

prove the predictive power of event prediction models. We hope to

provide a way to understand human behavior from the societal and

causal inference aspects and broaden the possibilities for future

work on societal event studies.
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A PSEUDOCODE

The training steps of the proposedmethod are shown inAlgorithm 1.

Algorithm 1: CAPE

Input: Observational event data

D =

{
{X≤𝑡

𝑖
, c≤𝑡

𝑖
, 𝑦𝑡+𝛿

𝑖
, }𝑀𝑖=1,A

}
𝑡∈𝑇

, a predictor P with

randomly initialized parameters, and initialized model

CAPE, including causal inference model C and robust

learning modules R for event prediction.

⊲ Train the causal inference model C.

1 while C has not converged do

2 Input D to C to obtain predicted potential outcomes. Calculate

the loss Lcau.

3 Update C by minimizing Lcau.

4 Freeze the causal inference model C.

⊲ Train the predictor P and robust modules R with C.

5 while P, R have not converged do

6 Input D to C to obtain predicted potential outcomes.

7 Calculate causally reweighed features X̃ from robust learning

modules R using predicted potential outcomes.

8 Input {X̃,A} to the predictor P to obtain the event prediction.

Calculate the prediction loss Lpred.

9 Calculate the constraint loss Lcstr from R using predicted

potential outcomes.

10 Update the predictor P and causal modules R by optimizing

Eq. 17.

Output: the updated model CAPE.

B IMPLEMENTATION DETAILS

For the causal inference model, we use three gated temporal con-

volutional layers with dilation factors 𝑑 = 1, 2, 4, and two graph

convolutional layers. The dimension 𝑑𝑎 is set to 10. The feature

dimensions of all other hidden layers including 𝑑𝑠 are set to be

equal and searched from {16, 32, 64}.

The number of treatment events 𝐸 is 20, where each treatment

event corresponds to an event type, such as appeal and protest.

Following previous work [10, 11], we set the historical window size

Δ to 7 and the lead time 𝛿 to 1. The hyperparameter 𝜂 used for

parameter regularization is fixed to 1e-5. We use the squared linear

MMD for representation balancing [35]. The imbalance penalty 𝛼

is searched from {10−5, 10−4, 10−3, 10−2, 10−1}. The scaling term 𝜇

in Eq. 17 is searched from {10−5, 10−4, 10−3, 10−2, 10−1}. All param-

eters are initialized with Glorot initialization [16] and trained using

the Adam [21] optimizer with learning rate 10−3 and dropout rate

0.5. The batch size is set to 64. We use the objective value on the

validation set for early stopping.

For causal inference baselines, CF 5 and BART 6 are imple-

mented using R packages. We implement the causal inference mod-

els CFR-MMD, CFR-WASS, SITE by ourselves and use the source

code of CEVAE 7 andNet-Deconf 8.We apply parameter searching

5https://rdrr.io/cran/grf/man/causal_forest.html
6https://rdrr.io/cran/BART/
7https://github.com/rik-helwegen/CEVAE_pytorch
8https://github.com/rguo12/network-deconfounder-wsdm20

on all baseline models. For representation learning based approach,

the dimension of hidden layers are searched from {32, 64, 128} and

the number of hidden layers are searched from {1, 2}. For mod-

els that introduce balancing representation learning, we search

the hyperparameter from {10−5, 10−4, 10−3, 10−2, 10−1}. The model

Net-Deconf involves an auxiliary network and we use the geo-

graphic adjacency matrix of locations.

For the experiments on event forecasting, we run the source

code of Cola-GNN 9 and GWNet 10. For event prediction mod-

els, we fix the dimension of hidden layers to 32. Cola-GNN takes

the geographic adjacency matrix as input and GWNet learns the

adaptive adjacency matrix.

We report the average of 5 randomized trials for all experiments.

At each training, we randomly split the data into training, validation,

and test sets at a ratio of 70%-15%-15% with a fixed seed value. All

python code is implemented using Python 3.7.7 and Pytorch 1.5.0

with CUDA 9.2.

C MORE EXPERIMENTAL RESULTS

Table 3: ITE estimation results showing the mean and stan-

dard deviation of ATT errors on all datasets with treatment

event being Reject. Lower is better.

India Nigeria Australia Canada

BART .184 ± .012 .072 ± .021 .045 ± .030 .070 ± .021
CF .181 ± .013 .062 ± .021 .039 ± .031 .067 ± .022
CFR-MMD .022 ± .011 .021 ± .020 .024 ± .013 .018 ± .009
CFR-WASS .016 ± .012 .018 ± .009 .026 ± .021 .016 ± .011
CEVAE .015 ± .010 .021 ± .018 .020 ± .012 .019 ± .015
SITE .010 ± .008 .019 ± .010 .022 ± .019 .024 ± .012
Net-Deconf .026 ± .021 .020 ± .018 .024 ± .019 .023 ± .014

CAPEC .016 ± .011 .016 ± .005 .012 ± .009 .015 ± .012
CAPEC−𝐺 .010 ± .013 .020 ± .012 .015 ± .010 .011 ± .011
CAPEC−𝑇 .015 ± .014 .014 ± .013 .007 ± .004 .016 ± .011
CAPEC−𝐵 .017 ± .013 .028 ± .013 .018 ± .014 .018 ± .009

(a) Australia (b) Canada

Figure 7: BACC value of event prediction when varying the

noise level in validation and test sets. Higher is better.

9https://github.com/amy-deng/colagnn
10https://github.com/nnzhan/Graph-WaveNet
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(a) India (b) Nigeria

(c) Australia (d) Canada

Figure 9: ITE distribution of different treatment events on

the outcome protest in violin plot. The loosely dashed line

represents the median.

(a) Australia (b) Canada

Figure 8: BACC value of event prediction when varying the

noise level in the training set. Higher is better.

D CAUSAL EFFECT IN SOCIETAL EVENTS
(RQ3)

In our study, whether there is a significant increase in certain types

of events (e.g., appeal) over the past window is defined as the treat-

ment of a location. The outcome is the future occurrence of a target

event, i.e., protest. In this case, the ITE measures the difference in

the outcome of the protest occurring between the two scenarios of

the treatment event (i.e., increased or not). Thus, when the neces-

sary assumptions hold, it implies a causal effect of the treatment

event on the protest. A higher ITE suggests that an increase in a

treatment event will be more influential in the occurrence of future

protests, compared to a decrease or no change.

To better illustrate the effect of treatment events on future protests,

we visualize the predicted ITEs based on Eq. 11. Violin plots for

the four datasets are shown in Fig. 9. We select three treatment

events for each dataset. They have relatively low, moderate, and

high ITEs on average, respectively. The results vary from datasets

due to different social environments. In India and Australia, mas-

sive historical protests may lead to future protests. In Nigeria and

Canada, events related to military posture and threats, respectively,

are likely to be more dominant factors in future protests. Neverthe-

less, we hardly conclude that protests will occur when the treatment

event increases substantially because both types of events (i.e., treat-

ment and outcome events) can be affected by hidden variables (i.e.,

unknown social factors such as economic and demographic factors).

These results can provide supporting evidence for conjectures on

protest triggers and generate hypotheses for future experiments.
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