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What are societal events?

Terrorism events in Africa

Epidemics outbreak on Week 47 ending Nov 22, 2014 in southern region 
Week 47 Week 46 Week 45 

influenza

Terrorist attacks

Traffic congestion 3



What are societal events?

Civil unrest events on Mar 17, 2013 in Brazil

Protests

https://www.google.com/search?q=economic+crisis&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiBlsa
-uYnfAhVKtlkKHVU7BKoQ_AUIDygC&biw=1050&bih=1114&dpr=1.75#imgrc=Jo1_FhlQuv_7NM:

https://ds.iris.edu/ds/newsletter/vol12/no1/63/february-2010-m88-chile-quake/

Earthquake events

Economics crisis
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Societal Events
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Societal Events are Forecastable 

Civil unrest
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Societal Events are Forecastable 
● Transportation congestion
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Societal Events are Forecastable 

Real-world Space

Epidemics
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Societal Event Forecasting
●Given some indicators, the task of societal event forecasting is to 

predict the time, location, and topic of a thing occurring in the future 
with significant social impact.

●Underlying mechanism of societal events 
○Complex

○Hard to comprehensively model
○Largely unknown

Build the forecaster driven by large historical data

Data-driven model as surrogate, thanks to Big Data!

Social Indicator Model Future events
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Lead Time
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Examples of Social Indicators
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Characteristics of Social Indicators in Big data Era

● Ubiquitiousness 
○ Every user/agent of social media/web/forum is a social sensor. 

○ They are everywhere observing the world all the time.

● Timeliness
○ 6,000 tweets every second.

○ 500 million tweets per day.

○ Usually beat the earliest official reports.

● Indicative and predictive signals

Complaints toward Trump on Change.org
12



Social Indicators vs. Event Precursors
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●Social indicators can be general signals, features, and 
even distributions in open source data sets 

●Event precursors refer to specific examples or 
instances in the historical data given a prediction



3. Data incompleteness
Reddits enable geo-info this year

Challenges in Societal Event Forecasting
and Precursor Identification

1. Dynamics
new #hashtags, abbreviations, new words

2. Multiple resolution
many messages with country info, 
few with coordinates

4. Big Data Paradox
many data in total, few data for each user 

5. Noisy
typos, chit-chat, rumors
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9. Sparsity in high-dimensional features
Numerous features of vocabulary and profile 
few are of interest for the research task

8. Heterogeneous network

7. Multilingual, multi-modal
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Challenges in Societal Event Forecasting
and Precursor Identification



Other challenges

● Dependencies among events, e.g., spatial dependencies

● Lack of labeled data, cannot afford to label massive data

● Model interpretability – societal events are influential

● Lack Mechanism Models
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Comparisons with Event Detection

○ Historical or Ongoing events

○ Discover anomaly

○ Model types

■ Unsupervised learning

○ Relevant techniques

■ Anomaly detection

■ Outlier detection

■ Change detection

■ Motif discovery

Event detection Event forecasting
– Future events
– Discover the mapping
– Model types

– Supervised learning
– Self-supervised learning
– Semi-supervised learning

– Relevant techniques
– Autoregressive
– Markov chain
– Classification
– Causal inference
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Precursor discovery
– Future events
– Discover the mapping
– Model types

– Supervised learning
– Self-supervised learning
– Semi-supervised learning

– Relevant techniques
– Multi-instance learning
– Multi-task learning
– Classification
– Deep learning



Comparisons with Spatial Prediction

● Spatial Prediction
○ Dependent variable

■ No need be in the future

■ Usually continuous values –”index”

○ Must have spatial dimension

Prediction v.s. Forecasting: 
• “Forecasting”: Must be variable in the future.
• “Prediction”: Not necessarily variable in the future.

• Event Forecasting

– Dependent variable
– Must be in the future

– Usually discrete values – “event”

– No need be in spatial dimension
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Overview
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Event 
Forecasting

Precursor 
Identification

focuses on event 
interpretation

focuses on 
forecasting

Interpretable Event Forecasting Models



Part 1: Precursor Identification in Spatio-
Temporal Event Forecasting

Yue Ning (Stevens Institute of Technology)
Huzefa Rangwala (George Mason University)



major protests 
began with student 
marches led by 
opposition leaders 
in 38 cities.
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Feb. 12

2014 Venezuelan National Students Protest



major protests 
began with student 
marches led by 
opposition leaders 
in 38 cities.

Opposition Leader, 
López, called upon 
students to 
peacefully protest.

22

Feb. 1 Feb. 12

2014 Venezuelan National Students Protest



major protests 
began with student 
marches led by 
opposition leaders 
in 38 cities.

Opposition Leader, 
López, called upon 
students to 
peacefully protest.

López, alongside 
María Corina 
Machado launched 
a campaign to 
remove Maduro 
from office.
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Jan. 23 Feb. 1 Feb. 12

2014 Venezuelan National Students Protest



major protests 
began with student 
marches led by 
opposition leaders 
in 38 cities.

Opposition Leader, 
López, called upon 
students to 
peacefully protest.

López, alongside 
María Corina 
Machado launched 
a campaign to 
remove Maduro 
from office.

Murder of former Miss 
Venezuela, Monica Spear.

January

Former presidential candidate 
Henrique Capriles shook the hand 
of President Maduro

The harsh police response to 
their initial protest

Attempted rape of a young student 
on a university campus in San 
Cristóbal
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Jan. 23 Feb. 1 Feb. 12

2014 Venezuelan National Students Protest



If social scientists need to do this a lot ……

25http://phdcomics.com/



Multi-Task Learning
Relationships between locations;
Spatio-temporal event progression;

Multi-Instance Learning
Label propagation from bag to individual; 
Temporal constraints between bags; 
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Open Source Indicators
News, blogs, social media, images, videos, time series, etc.

Representation Learning
embeddings; word2vec; doc2vec; etc.

+ -
do
c

do
c

Shared Knowledge

TaskTask Task

Task Task Task

The Big Picture
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‣ What is Precursor Discovery in Event Forecasting?
- Forecast the occurrence of event of interest using historical data 

Event Probability: 0.85
Day 1 Day 2 Day 3 Day 4

Precursor Discovery



30

‣ What is Precursor Discovery in Event Forecasting?
- Forecast the occurrence of event of interest using historical data 

- Predict days of importance before an event

Event
Day 1 Day 2 Day 3 Day 4 ……

Event Probability: 0.85
Day 1 Day 2 Day 3 Day 4

0.5 0.6 0.75 0.82 0.8

Precursor Discovery



31

‣ What is Precursor Discovery in Event Forecasting?
- Identify key docs/paragraphs/graphs from large-scale input

Event Probability: 0.85
Day 1 Day 2 Day 3 Day 4

Precursor Discovery
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‣ What is Precursor Discovery in Event Forecasting?
- Identify key docs/paragraphs/graphs from large-scale input

- Formalize precursor storylines

Event Probability: 0.85
Day 1 Day 2 Day 3 Day 4

Event Probability: 0.85
Day 1 Day 2 Day 3 Day 4

Precursor Discovery



July 28 July 29
July 30: Standard of 

Poverty July 31

Aug. 1: International 
Court of Justice verdict 
on Argentine debt crisis

Aug. 3Aug. 5Aug. 7: Workers demand 
for better job 
opportunities

Agenda 
developed for 
the migrant 
perspective

The Economic 
Convocation 

Argentina organized a 
demonstration

Unresolved 
debts in 

Argentina

Article on 
government 

power

Lear layoffs
caused 

workers to 
block highway
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Precursor Storyline
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• Existing approaches for event forecasting (when), examples:

- Lasso [Zhao et al, TKDE17]; 

- Fusion Method [Ramakrishnan et al, KDD14]; 

- Multi-Task Learning [Zhao et al, KDD15]; 

- Generative model [Zhao et al, SDM15]; 

Limitations: 

๏ Focus on prediction performance, lack of explanation 

๏ Unable to provide structured evidence

Existing Methods
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• Existing approaches for identifying precursors (why), examples:

- Storytelling [Hossain et al, KDD12]; 

- Combinational mixed Poisson process [Rong et al, KDD15]; 

Limitations:

๏ Dependent on observed event sequence (time series, 
sequential)

๏ Lack of predictive value

Existing Methods



• The proposed method: a nested Multi-Instance Learning framework

- Solve the above problems together (when & why)

- Significantly reduce time of manual inspection of 
specialists/scientists 

- Generate storylines of indicators while predicting events of interest
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Modeling Precursors for Event Forecasting via 
Nested Multi-Instance Learning [Ning et al. KDD16]



Positive bag
Negative bag

Supervised Learning Multi-Instance Learning (MIL)

Positive
Negative
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• Incomplete knowledge about labels in training data
• Propagate bag level supervision to individuals

Multi-Instance Learning



Pos + Neg -

Time Time
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Event: Student Protest
Location: San Paulo
Time: 2014-05-01

Event: None
Location: San Paulo
Time: 2014-05-10

Event Forecasting in Multi-Instance Learning



‣ Target Prediction Label, Y

‣ Nested Multiple Instance 
Learning
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Instance

Bag

Superbag

System Overview

• Each news article: Instance

• A group of news articles for a day: Bag

• A sequential collection of bags: Super-Bag

• Label is only associated at the Super-Bag Level

• Probabilistic Estimate for every News Article
(Instance) and Day (Bag)

Event (1) 

No Event (0)



Reduce classification error Control the probabilities of consecutive days

Control the margin of instance probabilities Avoid overfitting

40

Nested MIL Objective Function

+1-1
0

Day 1 Day 2



Reduce classification error Control the probabilities of consecutive days

Control the margin of instance probabilities Avoid overfitting
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Nested MIL Objective Function

+1-1
0

Day 1 Day 2



Reduce classification error Control the probabilities of consecutive days

Control the margin of instance probabilities Avoid overfitting

42

Nested MIL Objective Function

+1-1
0

Day 1 Day 2



Reduce classification error Control the probabilities of consecutive days

Control the margin of instance probabilities Avoid overfitting
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Nested MIL Objective Function

+1-1
0

Day 1 Day 2



Cross-bag similarity
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Nested MIL-Delta Objective Function

Day 1 Day 2



Selection of precursors based on their 
estimated probabilities 

time

Day t-m-1

Day t-m

Day t-1

Day t

news

0.97

0.86

0.78

0.92

Day t+l Event
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Precursor Discovery in Nested MIL
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Predictive Performance

1. Nested structure models: nMIL, nMIL-Delta, nMIL-Omega
2. The averaged daily estimates help predict events of interest
3. Effect of time accumulation > a single input



History Leadtime

Day 1 Day d
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Event

F1 
0.691Event

0.71Event

Event

Event

Event

1 day

2 days

3 days

4 days

5 days

0.67

0.712

0.773

5 days

4 days

3 days

2 days

1 day

5 days Event

Event

Event

Event

Event

5 days

5 days

5 days

5 days 0.626

0.676

0.687

0.773

0.737

F1 

4 days

4 days

4 days

4 days

4 days

How Early can NMIL Forecast?
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Identifying Key Sentences and Detecting Events 
[W. Wang et al. CIKM16]

● Most of the available text data are expressed using natural 
languages

● Transform the unstructured text data into machine readable format
● Help human analysts ingest broader information with less effort

Unstructured Text 
Data

Event Detection 
&Extraction

Concise Machine 
Readable 

Information
Applications



Problem Formulation & Motivations

• Automatically detect civil unrest events.

• Identify key sentences without ground truth labels.

• Allows for event summarization

• Downstream event encoding

• Visualization and human-in-the-loop
50



Challenges
Labor Intensive

Time Consuming

Hard to Adapt to 
new Domain

Document label is relatively easy to obtain
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Multi-Instance Learning + Representation Learning
Convolutional Neural Network

Learn distributed representation for instances
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Transfer bag label to instance label

negative bag

positive bag

negative bag

Multi-Instance Learning



Standard Supervised Learning
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Multiple Instance Learning

Traditional supervised 
learning

Multiple-instance 
learning

positive

negative positive bags

[Dietterich et al. 1997]

negative bags
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Typical MIL Assumptions

▪ no positive instances in negative bag

▪ at least one positive instances in positive bag

▪ at least k% of positive instances in positive bag

▪ instances are independently drawn from distribution
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Key Instance Detection
▪ The task of classic MIL is to train a classifier that 

labels new bags
▪ Sometimes positive instances are expected to be 

identified
▪ Protest event detail
▪ Customer review

▪ It is obviously desirable if we can label instances, 
which will explicitly recognize positive instances 

56



Convolutional Neural Network [Denil et. al. 2014]

62

Distributed Representation of Sentences

Convolution Layer

K-max Pooling Layer



Local and Context Information
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Model Overview

● We consider each document as a bag and each sentence as an instance

● Two layers of Convolutional Layer to construct the Local and Context representation for instances

● Classification information from MIL module is used to fine tuned the Instance Representation

Figure: MI-CNN Model Overview
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Loss Function
Cross Entropy Loss

Control num of key instances

Control probability margin

Control sentences similarity

Train the model with Back Propagation
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Experiments Performance
Precision Recall F1

SVM 0.818 (0.019) 0.720 (0.008) 0.765 (0.009)

MISVM 0.724 (0.030) 0.584 (0.017) 0.646 (0.018)

CNN Model 0.732 (0.033) 0.783 (0.026) 0.756 (0.007)

GICF 0.833 (0.019) 0.421 (0.09) 0.553 (0.086)

MI-CNN (Max) 0.685 (0.030) 0.730 (0.029) 0.706 (0.018)

MI-CNN (Avg) 0.731 (0.069) 0.789 (0.042) 0.759 (0.026)

MI-CNN (Context + 

Dynamic K)
0.742 (0.036) 0.813 (0.041) 0.775(0.006)

Table: Experiment Results for Event Detection (Protest or not)
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Experiments Performance

The histogram of predicted positive probability for protest and 

non-protest articles for test set
67



Compared with Heuristic Methods
Baseline Methods
● Keywords Protest: Select sentences containing protest related words
● Random Sentences: Randomly choose set of sentences
● Start/End Sentences: Select sentences from start and end of articles

Table: SVM classification performance for article label prediction based on 
sentences selected from different methods
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Extracted Key sentences

Table: List of positive and negative sentences selected by our model sorted by score
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Sentences Highlighting Cases

Wage and Employment, Labor, 
12/19/2015, 

[Mexico, Veracruz, Veracruz]

Government Policies, General Population, 
01/27/2016, 

[Mexico, Distrito Federal, Ciudad de México] 70



Event Type and Population specific tokens 

Table: Top scored terms in different categories of event populations and event types. All the articles are 

represented by the MI-CNN model selected key sentences
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Key Takeaways

• Joint Event Detection and Extractions as Multiple Instance Learning.
• Bag Labels Transferred to Instance Labels.

○Bag to Instance Aggregation Functions
• Distributed Sentence Representation combines local and global context. 

○Updated via back propagation
• Downstream: Visualizer, Event Encoder, Knowledge Graph Construction. 

72
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Event, Geolocation, Time
74

STAPLE: Spatio-Temporal Precursor 
Learning for Event Forecasting [Ning et al. SDM18]
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Event: Labor Protest
Location: D.C.

Time: 2015-04-01

STAPLE: Spatio-Temporal Precursor 
Learning for Event Forecasting [Ning et al. SDM18]
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all tasks share 
common features

STAPLE: explicitly enforces pairs of 
cities with similar event patterns in the 
past to learn similar model vectors

STAPLE: objective function



A
B

C

LK

time

A
B

D

C
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Similar event patterns in 
the past, similar models

Closer geolocations, 
similar models

Event: Yes
Location: A

Time: 2015-04-01

STAPLE: spatio-temporal constraints
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STAPLE:Event Prediction Performance

Personalized 
Models



(a) ICEWS (b) GSR
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City-level Prediction Performance



80http://www.kabultribune.com/index.php/2016/02/07/kunduz-residents-stage-protest-against-mounting-insecurity/

Security-related protest
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Security-related protest - precursors
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Learning Dynamic Context Graphs for 
Predicting Social Events [S. Deng et al. KDD19]

● Develop a novel graph-based model for predicting events

● Design a mechanism that encodes the dynamic graph structure of 
words from past input documents to forecast future events.

● Propose a temporal encoding module to alleviate the  problem  
that  pre-trained  semantic  features  usually  cannot reflect 
contextual changes over time.
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Graph Convolutional Networks 
[kipf and welling ICLR17]

Main idea: Pass messages between pairs of nodes

Source: https://tkipf.github.io/graph-convolutional-networks/

https://tkipf.github.io/graph-convolutional-networks/
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Encoding documents into graphs

day T-k

computer

students

police

blocktraffic

street

education

July

0.3

0.02

Word 
Embeddings

Pointwise mutual 
information (PMI)
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DynamicGCN: model framework

Encode data
Learn the node representation 
by involving the semantic 
information from neighbors

Integrate both the 
semantic information 
and node embedding

Map the final output 
vector to the prediction
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DynamicGCN: experimental evaluation
Thailand Egypt India Russia

F1 Rec. F1 Rec. F1 Rec. F1 Rec.

LR-Count 0.77 0.713 0.794 0.747 0.618 0.559 0.739 0.721

LR-word 0.715 0.634 0.78 0.751 0.543 0.433 0.705 0.689

LR-NGram 0.7293 0.6535 0.761 0.7039 0.552 0.441 0.714 0.714

GCN 0.761 0.758 0.849 0.816 0.653 0.627 0.784 0.826

nMIL 0.73 0.661 0.723 0.797 0.628 0.719 0.76 0.769

GCN+GRU 0.782 0.769 0.85 0.825 0.655 0.621 0.787 0.809

GCN+LSTM 0.781 0.77 0.851 0.827 0.649 0.614 0.786 0.791

GCN+RNN 0.757 0.755 0.851 0.82 0.642 0.602 0.787 0.809

Ours 0.797 0.773 0.862 0.829 0.669 0.627 0.804 0.799

Non 
temporal

Temporal

Data:
Integrated Crisis Early 
Warning System 
(ICEWS) Dataverse
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DynamicGCN: a case study

For more details please attend the paper presentation:
Tuesday (Aug. 6) at 1:30-3:00pm, Summit 4, Ground Level, Egan Center 



Conclusion and Future Directions –
Precursor Identification

- Representation Learning and Deep Learning
to automatically encode raw input and learn hidden features

- Multi-Instance Learning
Identify key characteristics in semi-supervised event modeling

- Multi-Task Learning
to infer relationships across different tasks (locations)

89

Future directions 
● Data integration for multiple sources
● Learning hierarchies of spatial precursors
● Semantic encoding and optimization
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Coffee Break
30 Minutes
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Part 2: Temporal Event Forecasting
Feng Chen (University of Texas at Dallas)



Taxonomy

Temporal event forecasting Spatio-temporal event forecasting

Predefined 
causality

Temporal 
dependency mining

Casual dependency 
mining

Optimized 
causality

Markov 
decision 
processes

Deep 
Neural 

Networks

Scan 
Statistics 

based

Anomaly mining

Societal Event Forecasting

Distance 
based
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Mining the Web to Predict Future Events 

94
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Goal: Predict future events using historical news and web ontologies.



Mining the Web to Predict Future Events 
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(Radinsky and Horvitz, WSDM’13)



Event Chains (Storylines)
Jan 16, 1992 Jury in Shooting by Officer Hears Conflicting Accounts

Feb 11, 1992 Closing Arguments Conflict on Killing by Teaneck 
Officer

Feb 12, 1992 Officer Acquitted in Teaneck Killing

Feb 13, 1992 Acquitted Officer Expresses Only Relief, Not Joy

Feb 16, 1992 250 March in Rain to Protest Teaneck Verdict
97



Event Chains

Cluster documents with similar text 

(using bag of words similarity)

Improve Precision:
Greedily optimize Story Entropy  (entropy in its entities)

to grow “slowly”
98
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04/14/2011

8/25/

12

01/19
/13

Never appeared in the news 
archive…
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P(Cholera in Havana | Cuba, flood)



103



104

P(Cholera in capital of [Country]| [Country], flood)

LinkedData
Resources



First 
Event

06/17/2010 

11:00AM +(2h)
BangladeshTime-

frame

Sa
m

e S
to

ry
 

Lin
e

07/27/2011

11:15AM +(3h)

Time-frame

Time

Dhaka

“Bangladesh floods: 1000s homeless ”

“Dhaka's Cholera wars ”

Capital Of

Abstraction Process

Following 
Event
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P(Cholera in capital of [Country]| [Country], flood)



Experimental Methodology

● 22 years of NYT (1986–2007 )
● Divide to learning and prediction:

○ Learn 1986- 1997

○ Predict 1998-2007

● During prediction, only the first event in the story line (without words 
containing the prediction target) is given to the predictor

● Predict the last event in the storyline



Algorithm Component Analysis

General Predictions Death Disease Riots
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

News alone 19% 100% 80% 59% 44% 34% 88% 38%
News + factual features 19% 100% 81% 62% 52% 31% 87% 42%
News + generalization 21% 100% 81% 67% 53% 28% 88% 42%

Full model 24% 100% 83% 81% 61% 33% 91% 51%

Table 3: Precision and recall for di↵erent algorithm configurations.

General Predictions Death Disease Outbreak Riots
Med. Avg. Med. Avg. Med. Avg. Med. Avg.
9 21 8 41 12 273 18 30

Table 4: Median and average time between alerts based on inferred probabilities of outcome and target events
in the world (days).

3.5 Sample Likelihoods and Storylines

The learning and inference system we have constructed
can be used to output the probabilities of key transitions of
interest from sequences of interest. The system continues to
refine its learning with updates of news and related data on
the Web. As we mentioned, the system can provide real-
time alerting from news stories on sets of specific outcomes
that it is monitoring. Examples of statistics of representa-
tive learned transition probabilities are displayed in Figure
6. These transition probabilities and mean times to transi-
tion highlight the ability of the system to provide inferences
about a variety of levels of abstraction.

We now present details on several additional storylines,
along with inferences and timing. Consider the example
displayed graphically in Figure 1. On January 26th, 2007,
the New York Times published an article about storms and
floods in Africa. News of a cholera epidemic were reported 4
days later. In response to this stream of news, the method-
ology we describe yields two alerts, one when observing the
drought reports in Angola at the beginning of 2006, and
another one after news of the reported storms. The sys-
tem learned from numerous similar incidents in its training
set that the likelihood of a cholera outbreak is higher after
droughts, specifically as reports on observations of drought
are linked to increasing probability of forthcoming water-
related disasters, which, in turn, are linked to increases in
likelihood of waterborne diseases. Examples of such transi-
tions and likelihoods include a set of Bangladesh droughts
analyzed by the system. 19 significant cases of drought were
reported in Bangladesh between 1960–1991 [19]. We ob-
served that in the story lines describing those droughts, a
cholera outbreak was reported later in the storyline in 84%
of cases. After the 1973 drought, responsible for the famine
in 1974, the NYT reported on October 13, 1975: “cholera
epidemic hits Bangladesh; may prove worse than one that set
record in ’74...”. A year after the 1982 drought, that “caused
a loss of rice production of about 53000 tons while in the
same year, flood damaged 36000 tons ...”, and, on March 13
1983, the NYT published an article entitled, “Bangladesh
cholera deaths” and a few months later, an article titled
“cholera reportedly kills 500 in 3 outbreaks in Bangladesh”.
Based on these past story lines the system inferred the out-
break of cholera at the end of January in 2007.

The prediction method learns that not all droughts are
associated with jumps in likelihood of such outbreaks of dis-
ease. Specific sets of preconditions that influence the likeli-
hood that a transition from a report of drought to a report

of cholera outbreak will occur are discovered. The method
was able to recognize that the drought experienced in New
York City on March 1989, published in the NYT under the
title: “Emergency is declared over drought” would not be
associated with a disease outbreak. The only consequence
was that New York City declared water curbs, which ended
on May 16th of that year. The system estimates that for
droughts to cause cholera with high probability, the drought
needs to happen in dense populations (such as the refugee
camps in Angola and Bangladesh) located in underdeveloped
countries that are proximal to water resources.
As an additional example of our predictions, we present

here the case of the 1991 cholera epidemic in Bangladesh.
This epidemic was estimated to have more than 210,000
cases of cholera with more than 8,000 deaths [16]. In our
experiments, we found that the running prediction system
would have produced an alert four days before the beginning
of the cholera outbreak, after observing the major floods. In
Figure 6, we display graphically the storyline detected. The

Figure 6: Example of cholera alert after storms in
Bangladesh. The triangular alert icons represent in-
ferences of significant upswings in the likelihood of
a forthcoming cholera outbreak.

system identifies that reports of major floods with high prob-
ability will be followed by reports of significant disease out-
break in Bangladesh. The inferences of the system are sup-
ported by a large study of cholera epidemics in Bangladesh
[16], where government figures and independently collected
data in 400 rural areas in Bangladesh between the years
1985–1991 were analyzed. The analysis shows that the num-

Both factual features and generalization are essential for forecasting. 



Alert Time (in days)

General Predictions Death Disease Riots
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

News alone 19% 100% 80% 59% 44% 34% 88% 38%
News + factual features 19% 100% 81% 62% 52% 31% 87% 42%
News + generalization 21% 100% 81% 67% 53% 28% 88% 42%

Full model 24% 100% 83% 81% 61% 33% 91% 51%

Table 3: Precision and recall for di↵erent algorithm configurations.

General Predictions Death Disease Outbreak Riots
Med. Avg. Med. Avg. Med. Avg. Med. Avg.
9 21 8 41 12 273 18 30

Table 4: Median and average time between alerts based on inferred probabilities of outcome and target events
in the world (days).

3.5 Sample Likelihoods and Storylines

The learning and inference system we have constructed
can be used to output the probabilities of key transitions of
interest from sequences of interest. The system continues to
refine its learning with updates of news and related data on
the Web. As we mentioned, the system can provide real-
time alerting from news stories on sets of specific outcomes
that it is monitoring. Examples of statistics of representa-
tive learned transition probabilities are displayed in Figure
6. These transition probabilities and mean times to transi-
tion highlight the ability of the system to provide inferences
about a variety of levels of abstraction.

We now present details on several additional storylines,
along with inferences and timing. Consider the example
displayed graphically in Figure 1. On January 26th, 2007,
the New York Times published an article about storms and
floods in Africa. News of a cholera epidemic were reported 4
days later. In response to this stream of news, the method-
ology we describe yields two alerts, one when observing the
drought reports in Angola at the beginning of 2006, and
another one after news of the reported storms. The sys-
tem learned from numerous similar incidents in its training
set that the likelihood of a cholera outbreak is higher after
droughts, specifically as reports on observations of drought
are linked to increasing probability of forthcoming water-
related disasters, which, in turn, are linked to increases in
likelihood of waterborne diseases. Examples of such transi-
tions and likelihoods include a set of Bangladesh droughts
analyzed by the system. 19 significant cases of drought were
reported in Bangladesh between 1960–1991 [19]. We ob-
served that in the story lines describing those droughts, a
cholera outbreak was reported later in the storyline in 84%
of cases. After the 1973 drought, responsible for the famine
in 1974, the NYT reported on October 13, 1975: “cholera
epidemic hits Bangladesh; may prove worse than one that set
record in ’74...”. A year after the 1982 drought, that “caused
a loss of rice production of about 53000 tons while in the
same year, flood damaged 36000 tons ...”, and, on March 13
1983, the NYT published an article entitled, “Bangladesh
cholera deaths” and a few months later, an article titled
“cholera reportedly kills 500 in 3 outbreaks in Bangladesh”.
Based on these past story lines the system inferred the out-
break of cholera at the end of January in 2007.

The prediction method learns that not all droughts are
associated with jumps in likelihood of such outbreaks of dis-
ease. Specific sets of preconditions that influence the likeli-
hood that a transition from a report of drought to a report

of cholera outbreak will occur are discovered. The method
was able to recognize that the drought experienced in New
York City on March 1989, published in the NYT under the
title: “Emergency is declared over drought” would not be
associated with a disease outbreak. The only consequence
was that New York City declared water curbs, which ended
on May 16th of that year. The system estimates that for
droughts to cause cholera with high probability, the drought
needs to happen in dense populations (such as the refugee
camps in Angola and Bangladesh) located in underdeveloped
countries that are proximal to water resources.
As an additional example of our predictions, we present

here the case of the 1991 cholera epidemic in Bangladesh.
This epidemic was estimated to have more than 210,000
cases of cholera with more than 8,000 deaths [16]. In our
experiments, we found that the running prediction system
would have produced an alert four days before the beginning
of the cholera outbreak, after observing the major floods. In
Figure 6, we display graphically the storyline detected. The

Figure 6: Example of cholera alert after storms in
Bangladesh. The triangular alert icons represent in-
ferences of significant upswings in the likelihood of
a forthcoming cholera outbreak.

system identifies that reports of major floods with high prob-
ability will be followed by reports of significant disease out-
break in Bangladesh. The inferences of the system are sup-
ported by a large study of cholera epidemics in Bangladesh
[16], where government figures and independently collected
data in 400 rural areas in Bangladesh between the years
1985–1991 were analyzed. The analysis shows that the num-

Most alerts are given in timely manner providing time for action
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Temporal Dependency based Event 
Forecasting – Problem Definition

! is a set of events; 
" is a discrete representation of time

Forecasting function
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Temporal Dependency based Event 
Forecasting – Problem Definition

! is a set of events; 
" is a discrete representation of time

Forecasting function

# $%,⋯ , $( → $%
* ,⋯ , $+

*

, s.t.: 
$%,⋯ , $( occurred at time , ∈ "

$%
* ,⋯ , $+

* occurred at time ,* ∈ ", ,* > ,

Instead of modeling the forecasting function # $%,⋯ , $(
based on a causal relational graph, this approach aims to model 
the function based on a deep neural network. 



A Compositional Neural Network 
Model for Event Forecasting

● Training Phase: 
○ INPUT: A training collection of news articles 

○ OUTPUT: a trained compositional neural network model 

○ Step 1: Unsupervised event chain learning

○ Step 2: Train a compositional neural network model to measure 
the coherence score between a cause event and a candidate next 
event

(Granroth-Wilding and Clark, AAAI’16)



Step 1: Unsupervised Event Chain 
Learning



Step 1: Unsupervised Event Chain 
Learning



Step 1: Unsupervised Event Chain 
Learning



Step 1: Unsupervised Event Chain 
Learning



Step 2: Compositional Neural 
Network Model Training 

● Word Embeddings

○ Represent predicates and arguments as vectors

● Argument composition

○ Compose embeddings into event vector

● Event Composition

○ Predict whether two event vectors come from the same chain



Step 2: Compositional Neural 
Network Model Training 



A Compositional Neural Network 
Model for Event Forecasting

● Testing Phase: 

○ INPUT: 

■ A testing collection of news articles dated at the current time. 

■ A trained compositional neural network model that measures the 
coherence score between two events. 

○ OUPUT:
■ The next candidate event.

○ Step 1: Extraction of the occurred events. 

○ Step 2: Ranking of candidate events based on their coherence 
scores to the occurred events. 



A Compositional Neural Network 
Model – Experiments

● Empirical validations for the multiple choice narrative cloze 
(MCNC) prediction task



A Compositional Neural Network 
Model – Experiments

● Empirical validations for the multiple choice narrative cloze 
(MCNC) prediction task



A Contextual Hierarchical LSTM 
for Event Forecasting

! is a set of events, in which each event is denoted by its description 
text (e.g., news headline) which is a sequence of words. For a given 
$/ ∈ !, 

" is a discrete representation of time

Forecasting function
# $%,⋯ , $( → $%

* ,⋯ , $+
*

$/ = 1/,%, 1/,2, ⋯ , 1/,34 .

(Hu et al., AAAI’17)



A Contextual Hierarchical LSTM 
for Event Forecasting

● The proposed contextual hierarchical LSTM (CH-LSTM) 
model has two main components:

○ Part 1: Word-level LSTM encoding

○ Part 2: Event-level LSTM encoding

○ Part 3: Next event LSTM prediction  (decoding)



Part 1: Word-level LSTM Encoding

1/,% 1/,34……

Event $/

ℎ/,% ℎ/,34……ℎ/,6

A sequence of words that 
represents an event

A sequence of latent 
embeddings of words. 



Part 2: Event-level LSTM Encoding
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Part 3: Event-level LSTM Event 
Forecasting
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Part 3: Event-level LSTM Event 
Forecasting
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Experiments

● A large-scale Chinese news event dataset containing 15,254 news 
series from Sina News. Each news series consists of a sequence of 
news articles (or a chain of relevant events) in temporal order, and the 
average number of articles for all news series is 50.

# $%,⋯ , $( ⟶ $%
*



Experiments

● A large-scale Chinese news event dataset containing 15,254 news 
series from Sina News. Each news series consists of a sequence of 
news articles (or a chain of relevant events) in temporal order, and the 
average number of articles for all news series is 50.

Baseline models

The proposed model# $%,⋯ , $( ⟶ $%
*



Empirical Results

Per-word perplexity of 
a model

Per-word 
classification error
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Event Forecasting from Twitter Data
Protest in Mexico, 7/14/2012 2012 Washington D.C. Traffic Tweet Map for 2011 VA Earthquake

(Chen and Neill, KDD 2014)

Social media is a real-time “sensor” of large-scale population behavior, and can 
be used for early detection of emerging events…                                                       

...but it is very complex, noisy, and subject to biases.

We have developed a new event forecasting methodology: 
“Non-Parametric Heterogeneous Graph Scan” (NPHGS)

Applied to: civil unrest prediction, rare disease outbreak detection, and early 
detection of human rights events. 



Technical Challenges
Integration of multiple 

heterogeneous 
information sources!



Technical Challenges
Hashtag “#Megamarch” 
mentioned 1,000 times

Influential user “Zeka” 
posted 10 tweets

Mexico City has  
5,000 active users 

and 100,000  tweets

Tweets that have been 
re-tweeted 1,000 times

A specific link (URL) 
was mentioned                        

866 times 

Keyword “Protest” 
mentioned 5,000 times

One week before Mexico’s 2012 presidential election:
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Twitter Heterogeneous Network



"#MexicoExigeDemocracia“ 

http://t.co/MdG5T3z0 Twitterers help me 
with a RT?. See you on Saturday at 15:00  in 
the #MegaMarcha.

"#MexicoExigeDemocracia""http://t.co/MdG5T3z0 

Twitterers help me with a RT?. See you on Saturday at 

15:00

Ready to march, tweeting or filming tomorrow 

#MegaMarcha vs imposición. Hopefully many 
say #Vamon

#MexicoExigeDemocracia
http://t.co/MdG5T3z0 

Veracruz, Jalapa, Mérida, Tepotzotlan add to 

the #MegaMarcha vs imposición. Tambien Los 
Ángeles. Who else says

imposición

# MegaMarchaSee you on Saturday at 15:00 in 

the #MegaMarcha

Mexico city

Benito Juarez

Ciudad

#Vamon

Twitter Heterogeneous Network



Twitter Heterogeneous Network



Nonparametric Heterogeneous Graph Scan
1) We model the heterogeneous social network as a sensor network.

Each node senses its local neighborhood, computes multiple 
features, and reports the overall degree of anomalousness.

2) We compute an empirical p-value for each node: 
• Uniform on [0,1] under the null hypothesis of no events.
• We search for subgraphs of the network with a higher than 

expected number of low (significant) empirical p-values.

3) We can scale up to very large heterogeneous networks: 
• Heuristic approach: iterative subgraph expansion (“greedy 

growth” to subset of neighbors on each iteration).
• We can efficiently find the best subset of neighbors, ensuring 

that the subset remains connected, at each step.

(Chen and Neill, KDD 2014)



empirical
calibration

empirical
calibration

Sensor network modeling

Node (Entity) Type Features

User # tweets, # retweets, # followers, #followees, #mentioned_by,  #replied_by, 
diffusion graph depth, diffusion graph size

Tweet Klout, sentiment, replied_by_graph_size, reply_graph_size, 
retweet_graph_size, retweet_graph_depth

City, State, Country # tweets, # active users

Term # tweets

Link # tweets

Hashtag # tweets

Each node reports an empirical p-value measuring the current 
level of anomalousness for each time interval (hour or day). 

Individual p-value 
for each feature

Features 
for each 

node

Minimum 
empirical p-

value for 
each node

Overall p-value 
for each node

min

# tweets

Observation in 
the current day 

Observations in 10 historical days

>?@ABC =
D

DE
= E. D



Nonparametric scan statistics

141

Subgraph

Berk-Jones (BJ) statistic:

Kullback-Liebler divergence:

Significance level
Number of nodes in S

Number of nodes in S with p-values ≤α.

p

p

f(p)

f(p)

0

0

1

1

a

H0

H1



Nonparametric graph scanning
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We propose an approximate algorithm with time cost O(|V| log |V|).



NPHGS evaluation- civil unrest
Country # of tweets News source*
Argentina 29,000,000 Clarín; La Nación; Infobae
Chile 14,000,000 La Tercera; Las Últimas Notícias; El Mercurio

Colombia 22,000,000 El Espectador; El Tiempo; El Colombiano
Ecuador 6,900,000 El Universo; El Comercio; Hoy

Gold standard dataset: 918 civil unrest events between July and December 2012.

We compared the detection performance of our NPHGS approach to 
homogeneous graph scan methods and to a variety of state-of-the-art 

methods previously proposed for Twitter event forecasting. 

Example of a gold standard event label:

PROVINCE = “El Loa” COUNTRY = “Chile”
DATE = “2012-05-18” LINK = 
“http://www.pressenza.com/2012/05/...”
DESCRIPTION = “A large-scale march was staged by inhabitants of the northern 

city of Calama, considered the mining capital of Chile, who demanded the 
allocation of more resources to copper mining cities”



NPHGS results- civil unrest

NPHGS outperforms existing representative techniques for both event detection 
and forecasting, increasing detection power, forecasting accuracy, and 

forecasting lead time while reducing time to detection.

Similar improvements in performance were observed on a second task: 

Early detection of rare disease outbreaks, using gold standard data about 17 
hantavirus outbreaks from the Chilean Ministry of Health.
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Part 3: Spatio-Temporal Event Forecasting

Liang Zhao (George Mason University)
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Societal event forecasting
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Discriminative Learning-based

Event 1 Event 2

Predictive mapping

Event indicators Future events

Forecasting model:
Spatial dimension:
• Which locations are correlated
Feature selection:
• Which features are discriminative
Model selection:
• Which predictive model to choose

fe
at

ur
es

locations

locations

there is event
there is no event
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Categorization
All-to-all models

locations
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Categorization

All-to-one models

locations

All-to-all models

locations
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Categorization

All-to-one models

locations

All-to-all models

locations

One-to-one models

locations
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Taxonomy

Societal event forecasting

Temporal event forecasting Spatiotemporal event forecasting

Discriminative Learning Generative / Mechanistic Learning Ensemble Learning

One-to-one

Generative

Data-driven+MechanisticAll-to-one Data-driven

Mechanistic

All-to-all
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One-to-One models
fe

at
ur

es

location

Use individual location to forecast for each corresponding individual location

location

Time t Time (t + p)

fe
at

ur
es

fe
at

ur
es
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Category 1: All locations share a single 
model

156

Pro: sufficient data to train model

Con: ignore the individual city’s exclusive 
characteristics (size, population, etc.)

City: Taxco
Population: 39K
Size: 134 mi²

City: Mexico City
Population: 8M
Size: 573 mi²

1K protest tweets have different meanings to these two locations

fe
at

ur
es

location



Category 2: Each model for each location

157

Pro: consider the individual location’s exclusive characteristics

Con: 1. Insufficient data for small cities. 

2. Ignore the relatedness among different locations

Many cities have little data

Few cities have huge data 

# tweets

#cities

Similar expressions
Same languages
Shared keywords
Relevant events
Similar topics

Relatedness among locations

fe
at

ur
es

location

1 2 3 4



Multi-task learning for Spatiotemporal Event 
Forecasting [Zhao et al., KDD’15]

158

Each model for each location All locations share a single model
Pro: consider the exclusive characteristics

Con: 1. Ignore the relatedness among 
different locations

2. Insufficient data for small cities.

Pro: Sufficient training data 
Con: Ignore the individual city’s 
exclusive characteristics

Combine

+

Regularize all the models
Enforce knowledge sharing

Jointly preserve:
• Spatial dependency
• Spatial heterogeneity fe

at
ur

es

location



fe
at

ur
es

location

1 2 3 4

• A feature important for a location will also tend to be also important
• Their weights value can be different. 

• Keywords “basketball” and “music” is unimportant for “influenza outbreaks” for various locations;
• Keywords “cold” and “cough” is important to forecast “influenza outbreaks” for various locations;
• However, their weights are different in different locations (e.g., due to different population size in each location.)

Multi-task learning for Spatiotemporal Event 
Forecasting [Zhao et al., KDD’15]
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More constraints
fe

at
ur

es
location

Sometimes, the users have preference 
on how many features to select

Model optimization algorithm: Solved by projected gradient descent.
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Experiments: Event Forecasting Performance

161

• The proposed CMTFL II is generally the BEST

• Multitask models outperform the traditional LASSO models 

Training set: Twitter data from July 1, 2012 to December 31, 2012
Testing set: Twitter data from January 1, 2013 to May 31, 2013

Label set: Authoritative news reports on civil unrest events

precision, recall, F-measure



Selected Features

162

Few and not relevant keywords, due to the 
sparsity of the training data for small state

Does not ensure to include 
the dynamic features

Does not ensure to include 
the dynamic features



Multi-task Event Scale Forecasting 
[Gao, and Zhao, AAAI’18]

Influenza outbreaks in Week 13 of 2016

Event Scale Forecasting (Gao et al., AAAI’18)

Ordinal regression

Generalize the output to ordinal!
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Multi-task Event Subtype Forecasting
[Gao, et al. AAAI’19]

Event Subtype Forecasting (Gao et al., AAAI’19)

Primary Pollutant in one day in Shenzhen, China, 2013.

Multi-class classification

Multi-class Classification

Generalize the output to multi-class!
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Taxonomy

Societal event forecasting

Temporal event forecasting Spatiotemporal event forecasting

Discriminative Learning Generative / Mechanistic Learning Ensemble Learning

one-to-one

Generative

Data-driven+MechanisticAll-to-one Data-driven

Mechanistic

all-to-all
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All-to-one models
fe

at
ur

es

locations
Use Multiple locations to forecast for each individual location

All the locations
(spatial dependency among 

indicators )

Each individual location
(spatial independency among 

events )

Spatial dependency

Spatial hierarchy

Spatial multi-resolution

When the inputs have strong:

Missing values
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Hierarchical Incomplete Multisource Feature 
Learning [Zhao et al., KDD’16]

Different feature in different spatial levels

City-level features

cities

State-level features

Country-level features

A city

countries

states
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Applications: Multi-source Event Forecasting

Why multiple data sources?
• Spatiotemporal events are often influenced by different aspects of the 

society. 
• Different data sources complement each other. 
• One single source cannot cover all aspects of an event.
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Spatial hierarchy among inputs

Challenge 1: Hierarchical topology 
• E.g., country-level, state-level, city-level
• Higher-level features can influence 

lower-level ones

Challenge 2: Interactive missing values
• Different data sources, different spans
• Need to consider the interactions among 

different sources.
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Hierarchical Incomplete Multisource Feature 
Learning
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Model Framework

Feature sparsity
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Dataset
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CU: Civil Unrest News reports

Disease surveillance reportsFLU: Influenza



Hierarchical features and missing 
values
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Multi-source features

Multi-source features

Multi-level sources

Block-wise missing values



AUC for different missing ratios
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(AUC: area under ROC curve) 

• The proposed HIML performs the best
• Methods considers hierarchical features performs better
• Performance decreases when missing ratio increases
• Methods that can handle incomplete data decreases slower in performance



Taxonomy

Societal event forecasting

Temporal event forecasting Spatiotemporal event forecasting

Discriminative Learning Generative / Mechanistic Learning Ensemble Learning

One-to-one

Generative

Data-driven+MechanisticAll-to-one Data-driven

Mechanistic

All-to-all
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All-to-all models
fe

at
ur

es

locations

Use all the locations to forecast for all the locations simultaneously

All the locations (spatial dependency among indicators)

All the locations (spatial dependency among events)
All the locations

In some domain, events can trigger other events
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Challenges:
• Existing methods fail to sufficiently utilize all different sources.

• Spatial heterogeneity 
• e.g., rural vs urban

• Class imbalance 
• a.k.a., accidents are rare

Hetero-ConvLSTM: A Deep Learning Approach to Traffic Accident 
Prediction on Heterogeneous Spatio-Temporal Data

[Zhuoning et al, KDD’18]
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The structure of the regional ConvLSTM 
model
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Model Performance

Using heterogeneous data sources is advantageous!
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Case study of traffic accidents
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Mechanistic
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Ensemble Learning for 
Spatiotemporal Event Forecasting

●Due to the complexity of the societal phenomena.

○Each data source may only cover one part

○Each model may only explain a portion of the truth

○Some truth are unobservable.

Ensemble learning:
• Leverage the complementary strength of different models
• Sufficiently utilize different data sources in modeling different 

phenomena
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Taxonomy

Societal event forecasting

Temporal event forecasting Spatiotemporal event forecasting

Discriminative Learning Generative / Mechanistic Learning Ensemble Learning

One-to-one

Generative

Data-driven+MechanisticAll-to-one Data-driven

Mechanistic

All-to-all
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SimNest: Social Media Nested Epidemic Simulation via 
Online Semi-supervised Deep Learning
[Zhao, et al., ICDM’15, Geoinformatica, 2019]

●Goal: Utilize social media data and disease mechanism to model the 
underlying influenza epidemics progression.

●Model characteristics: 

■Ensembles of Data-driven and Mechanistic Models

■Online Learning
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Epidemics Modeling (Category 1):
Computational Epidemiology 

188

3. Run simulation model

a. Demographics and social contact network

b. Disease progression: SEIR model

c. Interventions

School Closure Vaccinatio
n

Isolation

1. Model the following mechanisms 2. Tune parameters  against  
surveillance data



Epidemics Modeling (Category 1):
Computational Epidemiology 

● Challenges

○ Challenge 1: Coarse-grained surveillance data

○ Challenge 2: Dynamics of contact networks

○ Challenge 3: Poor timeliness

■ Surveillance data is at least one week behind.
189

State-wise: Week-wise:

Peter moved out to another 
city because he lost job.This year much 

more people get flu 
shot Jim is suddenly on vacation.



Epidemics Modeling (Category 2):
Data-driven Techniques on Social Media

● Fast monitoring real-time epidemics

● Individual-wise health condition mining

190

• Spatially & Temporally fine-grained
• No delay

Avoid crowds
in flu season, 

What Peter will 
do?

Get flu shot

…

Feel I’m getting flu

3rd day in the bed

Maybe it’s time back to work

2. Identify the individual’s disease progression1. Identify the response to flu



Epidemics Modeling (Category 2):
Data-driven Techniques on Social Media

191

Have No Idea of the Underlying Mechanism

What is the real disease contact network?
What is diffusion process of epidemics?

What is the consequence if someone took vaccine?
Any influence on infectivity if someone has summer holiday?

Challenge: Real Mechanism is hidden to social media



Motivations
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• Drawbacks:
– No mechanism on disease progression

– No mechanism on disease diffusion

– No consideration on interventions

Computational Epidemiology

• Drawbacks:
– Temporally coarse-grained

– Spatially coarse-grained

– Poor dynamics in social contact 

network

– One week delay

Social Media Mining

Combine

• Advantages:
– Mechanism on disease progression

– Mechanism on disease diffusion

– Consideration on interventions • Advantages:
– Temporally fine-grained

– Spatially fine-grained

– Change in social contact network is 

observable in real time

– No time delay

+



Idea
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Timely and fine-grained observations

Mechanisms of epidemics diffusion

Combine



Model: Overview
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Our objective: 
Minimize loss



The Proposed Model
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• Learn a mapping:

• Minimize supervised Loss:

Infectious (1) or not (0)

Deep neural networks

• Minimize bi-space inconsistency:

• Maximize the likelihood of infectious period distribution:

• Health stage should be consecutive:

Infectious period is Gaussian distributed

Online training by alternating optimization



Experiments: Dataset
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Connecticut (CT), Massachusetts (MA), Maryland (MD), and Virginia (VA), and the 
District of Columbia (DC)

• Dataset:
– Twitter: Year 2011 ~ Year 2014 in the US.
– Training set: Aug 1 2011 ~ Jul 31 2012.
– Test set: Aug 1 2012 ~ Jul 31 2014.



Experiments: Label and Metrics
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• Label:

– influenza statistics reported by the Centers for Disease Control and 
Prevention (CDC). 

– The CDC weekly publishes the percentage of the number of physician 
visits related to influenza-like illness (ILI) within each major region in the 
United States.

• Metrics:

– Lead time: How much time the output is ahead of the input.
– Mean squared error (MSE)

– Pearson correlation

– P-value

– Peak time error: Error of the predicted time of peak value



Experiments: Comparison Methods
● social media mining methods:

○ Linear Autoregressive Exogenous model (LinARX) 

○ Logistic Autoregressive Exogenous model (LogARX) 

○ Simple Linear Regression model (simpleLinReg) 

○ Multi-variable linear regression model (multiLinReg) 

● computational epidemiology methods: 

○ SEIR

○ EpiFast

● Detailed parameter settings:

○ See here: 
http://people.cs.vt.edu/liangz8/materials/papers/SimNestAddon.pdf 198



Influenza Epidemic Forecasting 
Performance

199

Training set: Tweets in Aug 2011 ~ Jul 2012 in the US.
Test set: Tweets Aug 2012 ~ Jul 2014 in the US.

Label set: CDC surveillance data

Lead time: How much time the
output is ahead of the input.

Pearson correlation: 
Strength of linear relation

P-value: likelihood that the 
null hypothesis is true.



Conclusion and Future Directions – Spatio-
Temporal Event Forecasting

● Spatial-temporal event forecasting methods are typically designed based on 
the modeling of complex relationships of past and future events from both 
the geographical and temporal dimensions. 

● Future directions

○ Spatial dependencies among the events

○ Bridge the event forecasting and decision making

■ Interpretability, uncertainty, robustness

○ Bridge the communities between data scientists and social scientists.

○ World common sense model that build a unified world surrogate model 
for event synthesis.
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Thank you
Q&A

Feel free to email questions or suggestions to
yue.ning@stevens.edu or lzhao9@gmu.edu
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