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ABSTRACT
Event forecasting with an aim at modeling contextual information is
an important task for applications such as automated analysis gen-
eration and resource allocation. Captured contextual information
for an event of interest can aid human analysts in understanding
the factors associated with that event. However, capturing con-
textual information within event forecasting is challenging due to
several factors: (i) uncertainty of context structure and formulation,
(ii) high dimensional features, and (iii) adaptation of features over
time. Recently, graph representations have demonstrated success
in applications such as traffic forecasting, social influence predic-
tion, and visual question answering systems. In this paper, we study
graph representations in modeling social events to identify dynamic
properties of event contexts as social indicators.

Inspired by graph neural networks, we propose a novel graph
convolutional network for predicting future events (e.g., civil un-
rest movements). We extract and learn graph representations from
historical/prior event documents. By employing the hidden word
graph features, our proposed model predicts the occurrence of fu-
ture events and identifies sequences of dynamic graphs as event
context. Experimental results on multiple real-world data sets show
that the proposed method is competitive against various state-of-
the-art methods for social event prediction.

CCS CONCEPTS
• Information systems → Data mining; • Applied comput-
ing→ Forecasting; •Computingmethodologies→ Supervised
learning by classification.
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Figure 1: Amotivating example of learning dynamic context
graphs for event forecasting. Given a raw input data X ( 1d)
and its target value y, existingmodels (1a) focus on semantic
representations; New graphmodels (1b) ignore the temporal
evolution of graphs in a sequence of inputs; Dynamic con-
text graph models (1c) encode both temporal information
and semantic embeddings in event modeling.

1 INTRODUCTION
Societal uprisings are due to gradually changing interactions be-
tween entities including citizens, organizations and governments
of countries. Forecasting social events from large, noisy and het-
erogeneous open source sensors (media) is a challenging problem.
Prior work [19, 30] in this area seeks to not only predict the onset
of a societal event but also identify related events or information
(termed as precursors) that lead to the particular event. For exam-
ple, a country’s new economic policy may affect people’s buying
behavior and the stock market, and may also lead to civil unrest.
Identifying the changes in economic policy and changes in con-
sumer behaviors could lead to predicting and understanding of the
civil unrest event.

Prior event forecasting approaches mainly focus on predicting
the events of interests and do not leverage the underlying dynamic
context from related events in the past. The task of learning cor-
responding event context while forecasting events presents many
challenges:
• Traditional event forecasting relies on feature selection and engi-
neering methods within the machine learning pipelines. These
approaches seek to identify a subset of highly discriminant fea-
tures that are capable of predicting events of interest in the future.
Both static (such as textual and spatial information) and dynamic
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features (network and time-based) have been studied [33]. How-
ever, the increasing scale of data and evolving concepts renders
existing feature engineering models inaccurate and inefficient.
• Existing models on event forecasting usually consider a culmina-
tion or summation of features in a given time period. This ignores
the effect of temporal dependencies across different events on a
future event.
• From the perspective of intelligence analysts, information over-
load is overwhelming. Presenting succinct representations of
events and their precursors in the form of summaries is an unmet
need.

We address the above challenges by proposing a dynamic graph
convolution network. It encodes temporal information in dynamic
graph structures to predict events of interest in the future and
generates graphs of concepts (entities and actions) representing
event-related information. As shown in Figure 1, bag-of-words
and distributed representations [15, 33] are focused on semantic
representations of words, sentences, or documents. Models based on
these representations are able to achieve good forecasting accuracy
but are inadequate to provide a succinct summary or explanation for
events. The graph convolutional model [11] employs an expressive
graph representation of nodes and their connections but ignores
the dynamic context associated with the data. In this paper, we
study the dynamic graph representations of event context in event
forecasting tasks. Our contributions are summarized as below:

• We develop a novel graph-based neural network for predicting
events of interest and identifying key context graphs in order to
understand their progression. Previous work has either focused
on improving forecasting performance [33] or document level
precursor identification [19]. In this paper, we present a novel
graph representation for summarizing event context using graph
structure while forecasting events.
• Dynamic graph structures over time are discovered in event
forecasting tasks for understanding and analyzing the events’
context. Instead of static features, we design a mechanism that
encodes the dynamic graph structure of words from past input
documents to forecast the events of interest in the future.
• In order to make a prediction, multiple samples of historical
data (e.g days of tweets/news) are collected and processed. In
this case, pre-trained semantic features usually can not reflect
contextual changes over time. We propose a temporal encoded
feature module to alleviate this problem. It takes into account
both the semantic embeddings and the hidden graph embeddings
from previous time periods.

We evaluate the proposed method with other state-of-the-art
models on real-world event datasets. With quantitative and quali-
tative experiments, we demonstrate the strengths of the dynamic
graph convolution network in predicting events in the future and
producing event context graphs from the history.

2 RELATEDWORK
We review feature selectionmethods for spatio-temporal event mod-
eling and various models for event forecasting. We also summarize
some recent work on graph convolutional networks.

2.1 Feature Selection in Event Modeling
Both supervised and unsupervised techniques have been explored
to extract text information of interest and to examine multiple types
of features such as spatial [24], temporal [30], or spatio-temporal
burstiness [12]. However, static semantic features are not able to
capture the dynamic trends over time in social events effectively.
In our proposed method, dynamic input is processed as different
examples arrive. It does not require that all the examples lie in the
same static feature space.

2.2 Event Forecasting
Many event forecasting approaches with spatio-temporal correla-
tions have been applied to predictions of elections [21, 27], stock
market movements [3], disease outbreaks [1, 26], and crimes [29].
Linear regression models have been developed to deal with simple
features, such as tweet volumes to predict the occurrence time of
future events [3]. More sophisticated features such as topic related
keywords [29] have also been studied. Zhao et al. [33] studied static
features derived from a predefined vocabulary by domain experts
and dynamic features generated from dynamic query expansion
in a multi-task feature learning framework. A multi-task learning
model [20] is proposed with dynamic graph constraints within a
multi-instance learning framework for precursor discovery and
event forecasting. These prior models do not provide an approach
to reveal hidden contextual information among entities. Our pro-
posed model is learned based on graph structures of words. This
gives us the benefit of discovering the impact of hidden connections
among words for forecasting future events.

2.3 Graph Neural Networks
In the past few years, many studies have adopted deep neural
networks to adapt to arbitrary graph-structured data [11]. Graph
convolutional networks utilize the adjacency matrix or the Lapla-
cian matrix to depict the structure of a graph and capture spatial
features between the nodes. Previously, Kipf and Welling presented
a simplified layer-wise graph neural network model (GCN) [11]. It
achieves state-of-the-art classification results on a number of graph
benchmark datasets[11, 23]. Graph Attention Networks (GAT) [28]
incorporated the attention mechanism into GCN to learn personal-
ized weights for nodes from their neighbors. For natural language
processing tasks, GCN has been successfully applied in semantic
role labeling [14] to encode syntactic structure of sentences, text
classification [11, 22, 31], and event detection based on syntax [18].

Even though graph convolutional models are able to capture
spatial features among the nodes, temporal information is not easy
to be taken into consideration. Given self-circulation mechanisms
of Recurrent neural networks (RNN) and their variants [5, 8], Seo et
al. [25] combined graph convolutional networks and recurrent neu-
ral networks to predict structured sequences of data. They replaced
operations on sequence data by a graph convolution. Compared
to the combinational models, we present an elegant solution to
encode temporal information and handle dynamic graph features
for predicting events.



3 METHODOLOGY
In this section, we present the main components of our approach to
model dynamic context graphs for predicting social events. Overall,
the key objectives of our proposed model are 1) to capture abstract
contextual graphs for event explanation; and 2) to forecast the
occurrence of a specific type of events given a historical input X
of event-related articles. The articles are not pre-categorized and
may report one or multiple events. We first encode the input data
into a sequence of graphs with node embeddings. Then we develop
a graph convolutional network model based on the sequence of
graphs to predict the occurrence (y) of a certain type of events.

X
encode
−−−−−−→ Graphs

model
−−−−−→ y

Given a city c , in order to formulate one training instance, we collect
published articles for k consecutive days prior to a date of interest,
t as the raw input (xc,t = {docs in days t − 1→ t − k}). Given the
occurrence of a target event on day t , we annotate this sample as a
positive sample (yc,t = 1); Otherwise, if there is no event on the
day t as well as the previous three days, we label this instance as
a negative sample (yc,t = 0). Then we construct a corresponding
graph from the raw input xc,t where each node is a word. Instead of
considering all historical articles together, we build separate graphs
for different days. Figure 2 provides an overview of the proposed
approach.

3.1 Encoding
To predict future events based on text data and to capture dynamic
graph-based context of the event, we first transform our text-based
input into a graph representation.

Dynamic Graph. For one sample, given its collection of past
historical articles, we extract n number of keywords by eliminat-
ing the very common words and extremely rare words. We create
multiple word relation graphs represented by a sequence of adja-
cency matrices [At−k , ...,At−1], where Ak ∈ Rn×n for each time
step (day). For each graph, the nodes are words and the dimen-
sions of the adjacency matrix are the total number of unique words.
The edges are based on word co-occurrence in the collection of
documents. To calculate weights between two words, we employ
document-based point-wise mutual information (PMI) [6], which is
a popular measure for word associations. The edge weight between
node i and node j at time t is defined as:

At [i, j] =

{
PMIt (i, j) PMIt (i, j) > 0

0 otherwise (1)

For each graph, we only consider the articles in the exact time
period exclusively. Therefore, the PMI value of a word pair i , j at
time t is computed as:

PMIt (i, j) = log
d(i, j)

d(i)d(j)/D
(2)

where d(i, j) is the total number of articles where both i and j ap-
peared at current time t .d(i) andd(j) are the total number of articles
in the collection containing at least one occurrence of i and j respec-
tively. D is the total number of articles in the collection. Generally
speaking, positive PMI values imply high semantic relevance of
words in the corpus. Thus, we only add weighted edges between
pairs of words with positive PMI values.

Feature Representation We model each word i in the graph
as a real-valued vector hi ∈ RF using the word embedding vector

of word i as the initial feature. This real-valued vector captures the
hidden syntactic and semantic properties of the word [2]. Word
embeddings are pre-trained on a large unlabeled corpus like the
Wikipedia database [15]. Since we build the graphs at different
times, we do not use hand-crafted chronological features of words.

3.2 Model Framework
Given the constructed graphs and the pre-trained word represen-
tations, we introduce our proposed model, Dynamic Graph Con-
volutional Network (DynamicGCN). We show how we extract the
learned key patterns of graphs while making event predictions. As
shown in Figure 2, our proposed model consists of input layers,
graph convolutional layers, temporal encoding layers, a masked
nonlinear transformation layer, and an output layer.

Input Layer The units at the input layer take dynamic graphs
which are represented as a sequence of encoded adjacency matrices
[At−k , ...,At−1]. The graphs are built from the raw input data. Each
node in the graph is encoded with an word embedding vector. The
edge weight between two nodes is calculated by their PMI.

Static GCN Based Network Encoding Graph Convolutional
Networks (GCN) [11] operate directly on a graph and induce node
feature vectors from the properties of their neighborhoods. The
model can be built by stacking multiple convolutional layers to
involve information from farther neighbors.

Formally, given an undirected graphG = (V ,E) where V (|V | =
n) and E are sets of nodes and edges. Let H ∈ Rn×F be a matrix
containing features of all n nodes, where F is the dimension of the
feature vectors, and row hv ∈ R

F is the feature vector for node v .
Given the adjacency matrix A ∈ Rn×n , a GCN layer is a nonlinear
transformation that maps from H to H (1) ∈ Rn×F

′

, defined as:
H (1) = д(ÂHW (0) + b(0)) (3)

W (0) ∈ RF×F
′

,b(0) ∈ RF
′

are model parameters. д is a non-linear
activation function. F ′ is the output feature dimension. Â is the
normalized symmetric adjacency matrix which is defined as:

Â = D̃−
1
2 ÃD̃−

1
2 (4)

Here, Ã = A + IN and D̃ is the degree matrix. IN is an identity
matrix with dimensions of N and D̃ii =

∑
j Ãi j .

GCN models have been applied to capture the spatial features
between the connected nodes. With multiple convolutional layers,
the model is described as:

H (l+1) = д(ÂH (l )W (l ) + b(l )) (5)
where l denotes the layer number, Â is the predefined adjacency
matrix, and H (l ) is the node embedding matrix passing by layers.
The intuition is that at each layer, nodes aggregate information
from their local neighbors. At deeper layers, the nodes indirectly
receive more information from farther nodes in the graph.

Dynamic GCN Based Network Encoding In our model, the
adjacencymatrix differs at each time step as the word co-occurrence
graph changes. Compared to the static model introduced above, the
dynamic GCN layer processes both the adjacency matrix and the
feature map at time t . At each time, the graph node learns a vector
of representation by using the information of its local neighbors
within the current time epoch. The embeddings of the neighbors are
updated from the previous epoch. Given different graphical struc-
tures at different times, temporal dependency is passed through
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ŷ

Graph 
Construction

Embedding 
Construction

Output

GCN module

Initial 
Embedding

GCN  
Output

TE module

ReLU

Tanh

Figure 2: System Framework of the Dynamic Graph Convolutional Network. Input data consists of event related articles or-
dered by time. We construct dynamic graphs based on input data and feed them into the GCN layers by time. For each GCN
layer except the first one, the input features are processed by a Temporal Encoded (TE) module, involving the output of the
last GCN layer and the current word embeddings, to capture temporal features. We add a masked nonlinear transformation
layer to unify the final output vector from the final GCN layer. The loss is calculated between the model output and ground
truth.

each GCN layer to the graph nodes. The new convolutional layer
is defined as:

Ht+1 = д(Ât H̃tW
(t ) + b(t )) (6)

where Ât ∈ Rn×n is the normalized symmetric adjacency matrix
at time t as defined in Eq. 4.W (t ) ∈ RF

(t )×F (t+1) and b(t ) ∈ RF
(t+1)

are model parameters of the GCN layer at time step t . Notice that
the H̃t is not the output of the last GCN layer, but the temporal
encoded (TE) embeddings calculated from the last TE layer.

Temporal Encoded Features (TE) At t = 0, the node features
H0 ∈ Rn×F

(0)
are the pre-trained semantic embeddings. The GCN

layer at this time learns the node representation by involving the
semantic information from the connected nodes that is similar to
the standard learning procedure of the GCN layer. Inspired by gate
units in recurrent neural networks, we process the input feature of
GCN layer by considering the information at the last moment. For
t > 0 in the past time window, we employ a temporal encoded layer
to re-encode the feature, including both the semantic information
and the learned GCN features of each node. In order to combine
the GCN encoded features at each time, as well as the initial word
embedding features, we employ a learnable linear transformation
on each of them. Thus, the initial step, two linear transformations,
parametrized by two weight matrices, are applied to Ht and H0,
respectively. Then we apply concatenation on the two transformed
features and pass the result to a tanh function.

The encoding procedures are defined as below:
H
(t )
p = HtW

(t )
p + b

(t )
p (7)

H
(t )
e = H0W

(t )
e + b

(t )
e (8)

H̃t = tanh([H (t )p ∥ H
(t )
e ]) (9)

whereW (t )p ∈ RF
(t )×α ,W

(t )
e ∈ RF×(F

(t )−α ), and 0 ≤ α ≤ F (t )

ensuring the feature dimensions between GCN layers match. F is
the dimension of the initial word embedding features. ∥ represents

the concatenation operation. Tanh activation is used to regulate
the values flowing through the network, and H̃t is the temporal
encoded embeddings applied at the GCN layer at time t .

Masked Nonlinear Transformation Layer By stacking the
dynamic GCN layers, we obtain a scalar feature representation for
each node in the graph by setting the output feature dimension
of the last layer to 1. Due to dynamic graph encoding, the output
feature vector of the last GCN layer is a combined representation
of all graph nodes, which is different for instances with different
graph nodes. To guarantee the consistency of our model, we employ
a masked nonlinear transformation layer to map the final output
vector to the prediction of the task. First, we pass HT ∈ Rn×1, GCN
encoded feature vectors at time T (the last time state), through a
masked zero padding layer to obtain a masked feature vector. The
length of the vector is the size of the vocabulary Nv , which varies
in different datasets. We then apply a nonlinear transformation to
the incoming data. Here, the transformations are defined as:

zT = zero_padding(H⊺T ) (10)
ŷ = σ (zTw

⊺
m + bm ) (11)

where H⊺T is the transposed row vector of the last GCN output and
zT ∈ R

Nv is themasked transformation. zT has the same dimension
for all samples in one dataset.wm ∈ R

Nv and bm ∈ R are learnable
weights and ŷ is the prediction of the occurrence of a future event.
σ is the sigmoid function.

Optimization Finally, we compare the prediction value with
the ground truth and optimize the binary cross entropy loss:

L = −
∑

y ln ŷ (12)
wherey is the ground truth and ŷ is the model prediction. All model
parameters can be trained via back-propagation and optimized
using the Adam algorithm [10] given its efficiency and ability to
avoid overfitting.



3.3 Vocabulary Sampling
The continuous evolution of language makes it difficult to identify
the important words over a long period of time. Training processes
with long-term examples require node flexibility when building
word relation graphs. However, with the rapid development of
social media, the usage of words tend to have short-term stability.
The dimensions of GCN model parameters are independent of the
number of nodes. This allows us to sample different nodes for
different examples. In our design, we select a certain number of
keywords in a short time and build graph representations based on
these nodes. As training samples overlap, the proposed model is
able to capture the trends of words. The proposed model is based
on dynamic graphs with changing words to ensure validation over
time. If the vocabulary is out of date, we can enlarge with new
words or delete outdated words. As such, the vocabulary can be
updated to accommodate changes in the input data.

3.4 Context Graph Generation
Context graph is extracted from the input dynamic graphs given
the learned model parameters. To generate a context graph, we
first extract the important nodes from the trained model and then
construct the subgraph of the input dynamic graph.

Extract Nodes Given our trained model, we first collect the
graph-structured instances of an event, with a sequence of the ad-
jacency matrix as the input. We obtain the scalar value hi,t from
the last GCN layer andwi,m from the masked nonlinear transfor-
mation layer of each word node i . Based on the two scalar values,
we calculate an indicator for each word node as:

Ii = hi,t ×wi,m
where

∑
Ii is the non-bias data of the sigmoid function as seen in

Eq. 11. The word indicator correlates with event prediction and
leads to identification of key words associated with an event. We
analyzed the I distribution of multiple instances and notice that it
follows a Gaussian distribution N(µ ≈ 0,σ 2). We set the threshold
range (µ, µ + 2σ ] for sampling nodes to represent the dynamic
contextual graphs associated with the target events.

Subgraph Construction Based on these nodes, we then extract
the isomorphic subgraph of the input dynamic graph at each time,
respectively. The weight of the edge in the subgraph is the sum of
the indicator values of the two endpoint nodes.

4 EXPERIMENT SETUP
In this section we evaluate our proposed model on the event fore-
casting tasks. Specifically, we want to answer the following key
questions: 1) whether our model is able to achieve satisfactory fore-
casting results compared to other baseline approaches; and 2) can
it recognize the key graph patterns of the task and/or the evolution
of the graphs by time?

4.1 Datasets
The experimental evaluation was performed on the event data
from Integrated Conflict Early Warning System (ICEWS) [4]. It
contains political events with the goal of evaluating national and
international crisis events. These events are encoded with 20 major
categories and their subcategories. Each event has been encoded

Table 1: Dataset Statistics.

dataset #documents #vocabulary #sample #pos #neg

India 111,653 75,994 12,249 4,586 7,663
Egypt 30,867 19,680 3,788 1,469 2,319

Thailand 19,410 27,281 1,883 715 1,168
Russia 85,527 49,776 3,552 1,171 2,381

with geolocation (city, state, country), time (day, month, year), cate-
gory, and its associated text. In this paper we focus on one major
category of events, protest, and select datasets from four countries.

India Protest events in India mainly consist of demonstrations,
rallies, strikes, and passage obstructions. We focus on data from
up to 15 cities every year from 2012 to 2016, including New Delhi,
Delhi, Calcutta, Hyderabad, and others.

Egypt The number of events varies from year to year in Egypt.
The main types of protests in this country are rallies and violent
protests. On average, we choose the top cities including Cairo,
Tahrir Square, and Alexandria. These cities have the highest fre-
quency of events in each year from 2012 to 2016.

Thailand We collect seven years of data from 2010 to 2016 and
focus on the capital of Thailand, Bangkok, to ensure a balance be-
tween the number of instances and events. Rallies, violent protests
and passage obstructions are the most frequent events.

Russia The protest data is limited, so we focus on Moscow, the
capital of Russia, from 2010 to 2016. We also involve two other cities
from 2010 to 2013 where protests have occurred for more than 20
days in a year.

4.2 Data Preparation
For each city, we take the documents within k history days before
the event as the raw input and the occurrences of target events as
ground truth. Table 1 lists the key statistics of the four datasets.
#documents is the total number of articles we utilized as raw input
data and #vocabulary is the size of vocabulary after removing low
frequencywords appearing less than 5 times to assure the generality
of the model. The vocabulary size varies from country to country
due to the data we obtained.We disregard the samples with very few
articles. Overall, for all datasets, the ratio of negative and positive
samples is about 5 to 3.

4.3 Evaluation Metrics
To quantitatively evaluate our model, we use the following perfor-
mance metrics:

Prediction Performance We evaluate the predictive perfor-
mance of our our model in terms of Precision (Prec.), Recall (Rec.),
and F1-Score (F1).

Dynamic Context Graphs We demonstrate the dynamic con-
text graphs learned from the model for events that occurred in one
country and discuss the effectiveness of our proposed model.

Hyper Parameter Sensitivity We analyze several hyper pa-
rameters in our model and test how different hyper parameter
choices affect prediction performance.



Table 2: Performance comparison on test set. (average over 20 trials)

Thailand Egypt India Russia

F1 Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 Rec. Prec.

Non-Temp. LR (Count) 0.7701 0.7129 0.8372 0.7945 0.7468 0.8488 0.6182 0.5589 0.6916 0.7389 0.7205 0.7582
LR (word TF-IDF) 0.7151 0.6337 0.8205 0.7795 0.7511 0.8102 0.543 0.4335 0.7266 0.7048 0.6894 0.7208
LR (N-Gram TF-IDF) 0.7293 0.6535 0.825 0.761 0.7039 0.8283 0.5515 0.4411 0.7355 0.7143 0.7143 0.7143
GCN 0.7613 0.758 0.7663 0.8491 0.8161 0.8787 0.6533 0.6271 0.6853 0.784 0.8262 0.7469

Temporal nMIL 0.7304 0.6614 0.8155 0.7234 0.7969 0.6623 0.6277 0.7193 0.5567 0.7595 0.7692 0.750
GCN+GRU 0.7825 0.7686 0.7999 0.85 0.825 0.8775 0.6547 0.6215 0.6963 0.7866 0.8087 0.7677
GCN+LSTM 0.7813 0.7702 0.7938 0.8507 0.8271 0.8766 0.6493 0.6137 0.6914 0.7858 0.7914 0.7812
GCN+RNN 0.7566 0.7553 0.7585 0.851 0.8204 0.8851 0.6416 0.6016 0.6892 0.7868 0.8088 0.7667
DynamicGCN 0.797 0.7734 0.8248 0.8617 0.8285 0.8984 0.6692 0.6275 0.7196 0.804 0.7988 0.8101

4.4 Comparison Methods
We compare our model with multiple event forecasting methods
and their variants as below:

• Logistic Regression (LR) [17]: LR is a basic and popular algorithm
for classification. In this experiment, we choose features includ-
ing word count vectors and both word level and N-gram level
TF-IDF vectors.
• Nested Multi-Instance Learning (nMIL) [19]: This is a hierar-
chical multi-instance learning framework for forecasting events
and identifying historical documents as event precursors. It uses
paragraph vectors as document level embeddings.
• Graph Convolutional Network (GCN) [11]: We employ the basic
GCN model without using temporal data and let our transforma-
tion layer be the last layer. See Section 3.2 for details.
• GCN+GRU [32]: A Temporal Graph Convolutional Network for
Traffic Prediction, which combines GCN and GRU to capture
spatio-temporal correlations in traffic data. Each GCN layer of
each time step processes the graph at this time, and the GCN
output is processed by our transformation layer.
• GCN+LSTM: A variation of GCN+GRU, we change the GRU
module to a LSTM module and use the LSTM layers to process
the spatial features from the GCN layer at each time step.
• GCN+RNN: Similar to GCN+LSTM, we replace the LSTMmodule
with a simpler RNN module.

4.5 Data Preprocessing
Given the datasets described in Section 4.1, we first preprocess
all the data by cleaning and tokenizing words. Then we remove
stop words and keep only stemmed words. We aim to find hid-
den relations between keywords in the prediction of future events.
Therefore, our task is different from natural language processing
tasks where the nuances of words should not be ignored. For each
raw input (xc,t = {docs in days t−1→ t−k}), we extract keywords
with TF-IDF by ignoring words that have high document frequency
(>80%) and then from which, we remove words appear in less than
5 times among all the documents in the dataset. On average, the
number of nodes per graph is around 600. Then the dynamic graphs
are constructed on these identified keywords following Section 3.1.

4.6 Parameter Setting
We pre-train a 100-dimensional word2vec embedding for each word
in the vocabulary using all the documents in each country.

For hyper-parameter setting, the number of stacked dynamic
GCN layers is set to be the number of history days. We adopt
rectified linear units (RELU) [16] as nonlinearity (function д in Eq.
6). The hyperparameter α in the TE module is set to 50. All the
parameters are initialized with Glorot initialization [7] and trained
using the Adam [10] optimizer with learning rate 5e-4, weight
decay 5e-4, and dropout rate 0.2. We use 70%, 15%, 15% instances
for training, validation and testing, respectively. The batch size is
set to 1 across all datasets.

For the LR baseline models, we use the same number of features
as the graph-structured data. For word count features, we remove
the stop words, tokenize the text and convert the documents into a
matrix of token counts. For TF-IDF features, we consider word-level
and N-gram level features, where N is set to 2 and 3.

For the basic GCNmodel, we use non-temporal graph data where
one graph is represented all the articles in historical days. For other
GCN models involve temporal features, we use the same data and
settings as our model. At each time step, we use one layer of GCN.
For models combined with recurrent neural networks, the size of
hidden states is optimized based upon grid search. The number
of hidden layers is optimized to 1. In order to make the models
converge faster, we apply the batch normalization [9]. The best
models are selected by early stopping when the validation accuracy
does not increase for 5 consecutive epochs.

5 EXPERIMENTAL RESULTS
5.1 Prediction Performance
We compare the prediction performance of all methods across the
four datasets. Table 2 reports the prediction performance of the pro-
posed DynamicGCNmodel1 in comparison to other state-of-the-art
approaches for the task of forecasting protests. The standard devia-
tion of prediction performance in different trials is close to 0.016
among all models. We divide the compared approaches into two cat-
egories depending on whether they model temporal characteristics.
We notice that for the non-temporal models, GCN has the highest
F1 scores for Egypt, India and Russia, and outperforms LR with

1Code is available at https://github.com/amy-deng/DynamicGCN.
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Figure 3: An event in Thailand: Hundreds of rice farmers are heading towards the Ministry of Commerce in Bangkok to
demand the government give their rice back and trying to oust Yingluck due to deception and waste in the rice scheme.

count, word and N-Gram TF-IDF features by 6.2%, 13.5% and 13.3%
in terms of average F1 score respectively. It highlights the insights
that the GCN model effectively extracts hidden features of target
events from the constructed word graph. Comparing the temporal
models with non-temporal ones, using temporal information yields
better predictive performance for most cases.

Focusing on the temporal graph models, the proposed Dynam-
icGCN with temporal features achieves the best performance in
terms of F1 scores across all the four datasets, and has the best
recall for Thailand and Egypt. Russia and India datasets are more
imbalanced and have relatively large vocabulary. On average, com-
pared to the best baseline model, the DynamicGCN achieves 1.94%
relative performance gain in F1 score over four datasets.

5.2 Dynamic Context Graphs
We present a case study to show how the proposed model captures
the evolution of the dynamic context represented by graphs over
time. We select a protest event that occurred in Thailand on Feb. 7,
2014. Figure 3 shows the extracted dynamic graphs over time based
on our model. The texts below are simple summaries of the relevant
event articles for the given day. We illustrate four subgraphs in the
history days before the event. We construct these graphs following
the procedure in Section 3.4 where σ ≈ 0.05 in this case. In each
subgraph, we highlight the nodes that are closely related to the
target event. The thickness of the edge represents the weight. The
three types of edges from thin to thick demonstrates weights for (0,
0.05), (0.05, 0.1) and (>0.1).

Interpretation The main story revolves around an election in
Thailand. Yingluck Shinawatra was the Prime Minister in Thailand.
The rice scheme was a program in Thailand to increase national rice
export revenue. A farmer protest event happened in Feb 7. Two
days before this event, the proposed model detected that Yingluck’s
former commerce minister was suspected to be involved in im-
proper rice deals. Thus keywords such as discredit, unlawful, rice,
and Yingluck in the graph were observed. The thick edges rice-
discredit and discredit-Yingluck suggested a possible case of fraud
involving rice traders and some politicians. The concext graph con-
nected two issues from the past: rice and discredit. Then we look at
the graphs two days earlier on Feb 3: the election was apparently
interrupted by the anti-election activity. Backtracking to the voting
day, the anti-election groups blocked the voters. The weighted thick

Figure 4: t-SNE [13] visualization of the third GCN layer fea-
ture representations of four countries.
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edges furious-defeat and threw-whistle-unaffected show that there
might be an intense collective struggle. On the eve of the voting
day, a violent incident occurred against the Prime Minister.

The election riots in the past days and the new rice incident
reinforced the farmers’ protests. Based on this contextual infor-
mation the model predicts that protest events are very likely to
happen in the near future. Compared to the non-graph or static
graph approaches, dynamic context graphs help analysts in cap-
turing the evolving information before events of interest, making
manual inference easier and clearer.

We also provide a t-SNE [13] visualization of the computed fea-
ture representations of the pre-trained dynamic GCNmodel on four
datasets in Figure 4. For each country, we select about 3000 words.
The feature representation is calculated byH0W (2), whereH0 is the
word embedding features of words andW (2) is the learned weight
matrix in the third GCN layer. Points of different colors are repre-
sentations of the learned feature in different countries, verifying
the discriminative representations learned from the model.

Figure 5 demonstrates an example of an event summary graph.
We build subgraphs according to Section 3.4 and combine them into



a single summary graph. In this event, lorry drivers were protesting
against the toll on roadside. In the detected summary graph, we
found two related storylines. One is about the transportation system
including railway, drive, transit etc. The other is about a reform on
road systems. Both are highly related to the protest event.

Table 3: Runtime comparison of graph models on Egypt
dataset. Structure is the number of GCN layers. Runtime is
the time spent on single GPU per epoch.

Architecture Structure Parameters Runtime(s)

GCN K = 2 37,685 20
GCN+GRU K = 7 5,251,396 22
GCN+LSTM K = 7 7,001,604 24
GCN+RNN K = 7 1,750,980 18
DynamicGCN K = 7 149,785 32

5.3 Model Complexity
We use a sparse representation for the adjacency matrix and per-
form stochastic gradient descent in the training process. For GCN
layers, by applying sparse-dense matrix multiplications, the com-
putational complexity of evaluating Eq. 3 and the memory require-
ments of the adjacency matrix are linear with respect to the number
of graph edges. We sample the keywords for graphs so that we can
easily put a batch of data into memory. The Kth-order (dynamic)
neighborhood for a GCN with K layers has to be stored in memory
for an exact procedure. In our experiment design (K up to 7), the
model works well for all datasets.

All experiments were run on the same machine using one GPU.
Table 3 shows the comparison of runtimes and numbers of param-
eters for each model on the Egypt dataset. The basic GCN model
processes on non-temporal data with 2 graph convolutional layers.
For temporal baseline models, the size of hidden states in recurrent
units is set to 64 here. Our model has much less parameters than
GCN+LSTM, GCN+GRU and GCN+RNN. We introduced the tem-
poral encoded module for processing temporal features. Combining
GCN and recurrent neural networks involves more parameters in
each of the time-dependent gates.

5.4 Hyper-parameter Sensitivity
We investigate the prediction performancewith varying dimensions
of word embeddings and variance with respect to both the number
of prior days and lead time.

Dimension of Word Embedding Features Each node is en-
coded with Word2vec embedding features with dimension 100. We
vary the dimension of the embedding feature from 50 to 300, where
the embeddings are trained on the same data. We show results for
only the Thailand and Egypt datasets. Figure 6 shows the predic-
tion performance in terms of AUC and F1 with varying number of
embedding dimensions. We observe that the word2vec dimension
does not affect the performance of the model significantly.

Number of Prior (Historical) Days Historical days denotes
the number of days over which the articles are extracted as input
to the prediction algorithms. We trained four different models that
use different numbers of history days from 5 to 8 respectively. For
each country, we consider the data for the year with the largest

(a) Thailand (b) Egypt

Figure 6: Sensitivity analysis on the dimension of word em-
bedding features.

amount of data. We present the F1 score and AUC results for all
countries in Figure 7. It is not always true that modeling with more
data will achieve better predictive performance. For instance, in
Egypt and Russia, the best F1 scores are obtained when using 6
historical days instead of 8.

Prediction of Future Days We also study the performance
with varying lead time from 1 to 4, where lead time indicates the
number of days in advance a model makes predictions. For each
country, we use one year’s data. Figure 8 shows the results of the F1
score and AUC in different lead time settings of the four datasets.
The best performance is achieved when leadtime = 2 or 4 for all the
four datasets. This can be explained by the idea that social events
usually take days to be planned.

6 CONCLUSION AND FUTUREWORK
Event forecasting and event context detection are important tasks
for decision makers and policy analysts. This paper presents a novel
dynamic graph convolutional model with a temporal encoded fea-
ture module for event forecasting and for identifying dynamic
context graphs. We demonstrated the effectiveness of the proposed
model on large-scale real-world open source datasets. In the future,
we plan to explore a few directions: 1) Automatic relationship ex-
traction for entities in dynamic graphs. Entity interactions have
an impact on social event development. Accurate entity relation
extraction will be helpful for generating narrative graph lines. 2)
Long-term event dependency. In this work, we focus on short-term
event forecasting and explanation. However, social events can also
be related to activities further in the past or change events further
in the future. 3) Another important direction is to consider multiple
geolocations simultaneously and study the influence from neighbor
locations. Social events are usually not independent of each other.
Thus, considering various geolocations is critical in spatio-temporal
event modeling.
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A PSEUDOCODE FOR THE PROPOSED
DYNAMIC GCN

We present the training steps of the proposed DynamicGCN model
in Algorithm 1.

Algorithm 1: DynamicGCN
Input: Initial embeddings, adjacency matrices, event

indicators
Output:Model parameters

W = {Wp ,bp ,We ,be ,W ,b,wm ,bm }

1 for each epoch do
2 b← random sample a batch
3 for each instance ∈ b do
4 H̃t ← H0
5 for t ← 0 to T − 1 do
6 if t > 0 then
7 H

(t )
p ← HtW

(t )
p + b

(t )
p

8 H
(t )
e ← H0W

(t )
e + b

(t )
e

9 H̃t ← tanh([H (t )p ∥ H
(t )
e ])

10 Ht+1 ← relu(At H̃tW
(t ) + b(t ))

11 zt ← zero_padding(H⊺t )
12 ŷ ← σ (ztw

⊺
m + bm )

13 ∆WL ← BackProp(L,y, ŷ,W)
14 W←W − η∆WL ▷ SGD step

B EXPERIMENTS OF THE TEMPORAL
ENCODED MODULE

B.1 Analysis of the TE Module
We compare the performance of the model with no TE module
settings in the four datasets. We also report the results when using
different historical days. The F1 score results are shown in Figure 9.
In most data settings, our model with the TE module outperforms
the one without TE modules, which proves its effectiveness in
handling temporal features.

B.2 Analysis of Hyper-Parameter α in the TE
Module

In the Temporal Encoded module design, we consider both the GCN
output feature and the initial word embedding which includes the
semantic information of the words. The two features are combined
in the TE module with a hyper-parameter α .

(a) Thailand (b) Egypt

Figure 10: Sensitivity analysis on α .

We set the dimension of word embedding to be 100. To vary the
combination of the two features, we change α value to 10, 20, 30,
40, 50, 60, 70, 80, 90, and test our model performance of F1 and
AUC scores on the Egypt and Thailand datasets. The results are
presented in Figure 10. It shows that the performance does not get
affected by the variance of this hyper-parameter. We obtain the
highest F1 score when α is around 60.

(a) Thailand (b) Egypt

(c) India (d) Russia

(e) Four countries

Figure 9: Sensitivity analysis on TE Module.
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