
Text-enhanced Multi-Granularity Temporal Graph
Learning for Event Prediction

Xiaoxue Han
Stevens Institute of Technology

xhan26@stevens.edu

Yue Ning
Stevens Institute of Technology

yue.ning@stevens.edu

Abstract—When working with forecasting the future, it is
all about learning from the past. However, it is non-trivial to
model the past due to the scale and complexity of available data.
Recently, Graph Neural Networks (GNNs) have shown flexibility
to process different forms of data and learn interactions among
entities, giving them advantages in real-life applications. More
and more researchers have started to apply GNNs and temporal
models for event forecasting because events are formalized in
knowledge graphs. However, most of these models are based on
the Markov assumption that the probability of a event is only
influenced by the state of its last time step (or recent history). We
claim that the occurrence of an event not only has short-term but
also long-term dependencies. In this work, we propose a temporal
knowledge graph (KG)-based model that considers different
granularties of histories when forecasting an event; this method
also integrates news texts as auxiliary features during the graph
learning process. Extensive experiments on multiple datasets are
conducted to examine the effectiveness of the proposed method.
Code is available at: https://github.com/yuening-lab/MTG.

Index Terms—Text-enriched Knowledge Graphs; Dynamic
Graph Neural Networks; Multiple Temporal Granularities

I. INTRODUCTION

Graphs have been used to represent data and knowledge
in many real-life applications [1], [2]. For instance, social
networks [3] are graphs where nodes represent individuals
and edges represent connections. Knowledge graphs (KGs) [4]
store information between entities by their relations. KGs can
also be used to demonstrate events between entities (e.g.,
A attacks B). While human data evolve over time, graphs
also change over time (e.g., new relation types, deletions of
edges/nodes). How to effectively model temporal information
in graphs and make predictions based on historical changing
graphs becomes a challenging problem.

In recent years, more and more researchers started to
leverage advanced machine learning technologies on graph-
based applications such as forecasting societal events [5]–[7].
However, most of the approaches are based on the assumption
that the Markov property is held, which means the occurrence
of an event is only dependent on very recent history. In reality,
this assumption does not hold most of the time. We claim that
events not only have short-term dependencies on the past few
days but also have long-term dependencies that can be traced
back to months or even years before. For instance, long-term
economic depression affects the occurrence of many types
of societal events. Intuitively, if we train a machine learning
model to predict if target events such as protests would happen

2015/11 2015/12

protest

Event frequencies

Event statistics 2010-2015

R
at

io
 o

f
da

ys
 w

it
h

ev
en

t

Events

protest

0.4
0.3

0.2
0.1

Events at 2015/12/31
Citizen

M ilitary
PersinnelParliament

negiotiation

 pr
ot

es
t

News Sentence:
"...staged

demenstrations,
 clashed wtith..."

News Sentence:
"...show up at the
rallies and vist
the people..."

long-term
statistics

medium-term
tendencies

short-term
triggers

predict protest
at 2016/1/1

time

2010

2015/12/31

2015/11

Fig. 1. A prediction example using multi-granular data including long-
term statistics, medium-term tendencies, and short-term triggers. To predict
if a protest will happen on 2016/6/1, three factors should be taken into
considerations: 1) Short-term triggers. Events from 2015/12/31 may trigger
a protest. 2) Medium-term tendency. In the previous two months, people
tend to demonstrate and protest. 3) Long-term statistics. Historically, protests
happened on 40% of days in the past five years.

tomorrow in a city, there are several factors that should be
taken into consideration: 1) Short-term triggers. Are there any
events that happened in the last few days that may trigger a
protest? 2) Medium-term tendency. Do people tend to protest
these days? This could be affected by many factors such as
the current economy and unemployment rates, and a look-
back period more than few days is required to estimate such
a tendency. 3) Long-term statistics. Is this society in a stable
status? Statistics obtained on the scale of years can act as
prior knowledge for a prediction model. A demonstration of
this multi-granular data is provided in Figure 1. Most existing
work only models short-term triggers but ignores the other
two factors, which limits the performance of those models in
making more accurate and reliable predictions.

In this work, we focus on the task of forecasting large-
scale societal events. Historical event information is formu-

https://github.com/yuening-lab/MTG

lated as quadruples (source actor, event type, target actor,
time) that summarize the key factors of events. For instance,
the event Thailand Citizen demonstrated a protest against
Thailand Military Personnel on 7/22/2010 can be summarized
as (Thailand Citizen, protest, Thailand Military Personnel,
7/22/2010). These quadruples further form a knowledge graph.
In addition, the corresponding piece of text describes the event:
“The sources said Thaksin gave his version of the troubles that
transpired in Bangkok between March and May this year, in
which the fugitive former premier’s supporters staged anti-
government demonstrations, clashed with security forces and
rioted”. We view the quadruples as compact representations of
events and the corresponding texts as detail-enriched auxiliary
features. Our goal is to propose a temporal graph learning
model that fully utilizes historical information in different
forms to make predictions. Specifically, we aim to solve two
open problems: 1) How to design a knowledge graph model
such that it can capture historical information in different
hierarchies (short-term triggers, medium-term tendencies, and
long-term statistics)? 2) How to leverage text information to
enhance the prediction performance?

To solve these problems, we propose an end-to-end text-
enriched graph learning model, MTG, that takes into account
multiple temporal granularities. It mainly consists of three
parts: a memory module to learn long-term statistics; a cache
module to learn medium-term tendencies; and a dynamic graph
module to learn recent short-term triggers. We propose a text-
enriched knowledge graph-based network, Text-CompGCN,
such that text features can be seamlessly integrated with
the model. To validate the proposed method we conduct
experiments on four different datasets. A variety of baselines
are compared to prove the effectiveness of our model.

Our contributions can be summarized as below:

• We develop an end-to-end temporal graph-based model
that learns embedding vectors for entities and event
types (i.e., entity relations) through different historical
hierarchies. We design a message passing function to
learn the evolution of relation types. We also introduce
a method to update and preserve long-term historical
information.

• We introduce a new GNN architecture that fuses text fea-
tures into the aggregation and message passing processes.
This method learns coherent representations via events
and texts and frees us from the need to design separate
modules for texts.

• We conduct extensive experiments and perform ablation
studies to analyse the effectiveness of leveraging different
components in our proposed method. We also compare
our method with baselines utilizing different forms of
input data. We provide readers useful insights on what
kind of information might be most useful and how to
efficiently construct desired features for temporal event
forecasting tasks.

II. RELATED WORK

A. Dynamic Graph Learning

With its capacity to efficiently model interactions in graph
data, graph representation learning has gained increasing pop-
ularity in machine learning [8], [9]. Traditional graph learning
methods often focus on static graphs [10]–[13]. However, in
many real-life systems such as social networks [14], [15],
product review networks [1], and protein-protein interactions
(PPIs) [16], node interactions are dynamic, which means these
interactions change over time. This temporal information is
critical for graph-based predictions [17]. In recent years, there
are many studies on dynamic graph learning [18], [19]. In gen-
eral, these approaches can be summarized into two categories:
discrete snapshots and continuous-time graphs based on the
method of modeling temporal information [20], [21].

The general way to implement discrete snapshots is to
model the interactions within a coarse-grained time interval
as a static graph [7]; a series of static snapshots are con-
nected in the graph-level with time series models such as
Recurrent Neural Networks (RNNs) [22]. Continuous-time
graph learning methods have more diverse approaches. Rossi
et al. [17] propose Temporal Graph Networks (TGN) which
learns the temporal embedding of nodes by continuously
updating the memory of a node with messages generated from
node interactions. Deng et al. [7] propose a Dynamic Graph
Convolutional Network (DynamicGCN) that captures node-
level temporal information through temporal encoded features.
Temporal Point Process (TPP)-based approaches [23], [24]
also demonstrate impressive performance in learning long-
term evolution processes by modeling the conditional intensity
of past events. Another approach treats time stamps as an
additional feature of a link and assigns time-dependent weights
to links [25].

Both approaches have their advantages and disadvantages:
discrete methods treat snapshots as static graphs and only
learn graph-level changes over time. Continuous-time graph
methods, on the other hand, are able to keep track of the
dynamics at node- and edge- levels, thus are considered to
be fully “dynamic” compared to discrete methods. However,
such approaches can not provide a precise representation of
graphs due to the “staleness” problem [26] where node or edge
representations that are updated long time ago are outdated
for the present time. In our work, we aim to combine these
approaches: we use a continuous dynamic graph-based module
to learn the long-term evolution of entities (nodes) and event
types (edges), and a discrete graph-based module to learn
short-term node-level interactions and make final predictions.

B. Event Forecasting

Human events, such as protests, strikes, and occupations,
often show recurring patterns. Forecasting these events based
on historical event records has become a promising topic [27].
Analyzing such events can provide people opportunities to
evaluate their strategies or take actions to minimize their
losses. As deep learning has achieved success in a wide range

of fields, more and more researchers have attempted to develop
deep learning models for event prediction tasks which have
demonstrated superiority over traditional methods [6], [7],
[28], [29].

Cortez et al. [28] develop a Long Short-Term Memory
network (LSTM)-based model that predicts emergency events
(e.g. environmental emergency, traffic accidents, and crime)
by learning the historical evolution with a look-back of 5 or 8
days. Deng et al. [6] introduce a dynamic graph convolutional
network to predict the occurrence of protest events while
providing dynamic graph contexts in short-term history. Wu
el at. [29] propose a hierarchically structured Transformer
Network that predicts spatial events based on spatial-temporal
information retrieved in past time steps. All the methods
mentioned above are based on the Markov assumption that
the probability of an event is only dependent on very recent
history, which does not always hold in real-life scenarios
and thereby limits their performance. Also, aforementioned
methods mainly utilize events or text data as model input.
Deng et al. [7] combine both event knowledge graphs and
text data in a fusion module for predicting multiple types of
future events. However, this work only utilizes text data (e.g.,
news articles) as word graphs which have limited semantic
representations and cannot capture contextual information. We
believe that it is critical to integrate text as auxiliary features
more coherently. Thus we aim to design a knowledge graph
neural network that integrates text while making predictions
based on historical temporal graphs, such that it simultane-
ously learns text (semantic) and event (relational) patterns
during message passing processes instead of modeling them
with separate networks.

III. PROBLEM FORMULATION

Given the historical input data X1:t, the goal of this work is
to model the probability of a certain type of events occurring
at a future timestamp t:

P(yt+∆t|X1:t), (1)

where ∆t > 0 is the lead time, yt+∆t ∈ [0, 1] represents
the occurrence of the target event type. X1:t is the sequence
of encoded features of the past events E1:t where Et =
{e1, e2, ..., em} is a set of events (m) occurred at time t. In this
work, each event is formulated as a tuple ei = (si, ri, oi, fi, t)
and events that happen on the same day can be organized into a
knowledge graph. For the i-th event, si is the source entity, oi
is the target entity, ri is the event type, and fi is an embedding
vector that encodes the news sentences describing the event.
Note that t is a changing variable and our work focuses on
making online predictions while new data keep arriving.

The objective of this work is to propose a graph neural
network to capture multi-granular temporal information in the
past and to forecast target events (e.g. protests) at a future
time step. A summary of important mathematical notations is
provided in Table I.

TABLE I
IMPORTANT NOTATIONS AND DESCRIPTIONS

Notation Description

s, r, o source entity, relation type, and object entity
fi sentence embedding of the i-th event
Et, Gt event summary and event graph at time t
C, M cache matrix and memory matrix
M,P cache size and memory size
ct,(v), ct,(r) caches for entity v and event type r at time t
mt,(v), mt,(r) memories for entity v and event type r at time t
hv

′, or
′ learnable embeddings for entity v and event type r

Ht the embedding matrix for all entities of Gt

hGt graph representation of event graph Gt

IV. PROPOSED METHOD

In this section, we present the overview of our proposed
framework, MTG, as shown in Figure 2. Its components can
be summarized as: 1) A cache module to learn medium-term
tendencies from the past events and news data. 2) A memory
module to learn long-term statistics from past events and
cached memories. 3) A dynamic CompGCN module to capture
short-term triggers through interactions among entities and the
corresponding news data. Hidden signals learned through these
three modules are combined to predict the occurrence of target
event in the future.

A. Model Framework

1) Cache Module: The first component of MTG is an
RNN-based cache module that keeps track of the evolution
for both entities and relations from previous events and their
corresponding text descriptions. This module is inspired by the
memory module of Temporal Graph Networks (TGN) [17].
However we think it is more appropriate to name our module
“cache” as we observe that it tends to forget long-term history
owing to the nature of RNN. Also we can distinguish it with
our own memory module that preserves long-term history,
which is introduced in the next section.

To start, we create a cache matrix for all entities and all
relations as C ∈ R(N+K)×M , where N is the number of
entities, K is the number of relations (i.e., event types), and
M is the memory size. The matrix is initialized with zeros.
Let Et = {e1, e2, ..., em} be the list of events that happened
at time t, where ei = (si, ri, oi, fi, t). For simplicity, we use
csi or coi to denote the cache vectors for subject entity si
and object entity oi; we use cri to denote the cache vector for
relation ri. Let Gt be the event graph built by the set of events
Et.

We create messages for entities and relations in each event
ei to save up-to-date information as follows. Theses messages
are regarded as embedding inputs used in later temporal
learning processes.

msgt,(si) = zt,(si) ∥ zt,(oi)︸ ︷︷ ︸
graph embeddings

∥ ct−1,(ri)︸ ︷︷ ︸
relation cache

∥ tt︸︷︷︸
time embedding

(2)

msgt,(oi) = zt,(oi) ∥ zt,(si) ∥ ct−1,(ri) ∥ tt (3)

M emory (t)Cache (t)

Sentence
embedding

Recurrent
Encoder

Text-CompGCN

Citizen

M ilitary PersinnelParliament

negiotiation

 p
ro

te
st

News Sentence:
"...staged

demenstrations,
 clashed wtith..."

News Sentence:
"...show up at the
rallies and vist
the people..."

zs(t) zo(t)msg(s)

msg(r)

zo(t) zs(t)

cr(t-1)

Tzs(t) zo(t) F

T
zs(t)

zo(t)
msg(o)

ms(t-1)

mo(t-1)

mr(t-1)

cs(t-1)

co(t-1)

cr(t-1)

Tcr(t-1)

ms(t)

mo(t)

mr(t)

cs(t)

co(t)

cr(t)

t+1

t-1

M emory updator Cache updator

Cache (t-1)

M emory (t) Cache (t)

Events at t:
{(s, r, o, T, F)}

Cache and M emory M odules

Prediction

Input

Graph
Attention

t+h

...

t+1

M emory (t-1)

Fig. 2. An overview of MTG. The text-CompGCN aggregates the entity, event type, and news text features at timestamps t + 1 to t + h. The features of
entities and events types are learned from previous timestamps with the cache and memory modules: at timestamp t, it learns the entity embeddings with a
temporal graph attention embedding model and construct messages, update the caches, and update the memories. A recurrent encoder is applied to model the
temporal information for final prediction. The model is constructed end-to-end and all parameters are learned at the same time.

msgt,(ri) = zt,(si) ∥ zt,(oi) ∥ f̃ i ∥ tt (4)

f̃ i = Wsfi (5)

zt,(v) = emb(Gt, v, t) (6)

where msg(si)t and msg(oi)t are the messages generated
for subject si and object oi, respectively, and msgt,(ri) is the
message generated for the event type ri. ∥ is the concatenation
operation. ct−1,(ri) is the memory of the event type ri from
the previous time step. emb() is a trainable graph embed-
ding model consisting of L temporal graph attention layers
(see Appendix A for detailed equations). zt,(si) and zt,(oi)
are learned embeddings of subject si and object oi through
the graph embedding model. We use the entity embedding
zt,(si) and zt,(oi) to construct the messages instead of using
the caches ct−1,(si) and ct−1,(oi) to alleviate the potential
“staleness” problem [26], because the cache vectors that are
updated a long time ago may no longer be present in the
recent tendencies. We attach the relation cache ct−1,(ri) to the
messages of entities so that the relational information between
source and target entities can be included. fi is the pretrained
embedding for the news sentence that describes the current
event ei using BERT [30], [31]. Ws is a trainable weight that
transforms fi to the desired dimension in Equation 4, and tt is
the temporal embedding that encodes the temporal information
of the current time step. If more than one message is generated
for each entity or relation at the timestamp t, we just use the
mean of the messages instead for further operations.

With the messages generated, the memory of the entities
and relations are updated via Gated Recurrent Unit (GRU)
[32] memory updaters:

ct,(si) = GRUe(ct−1,(si),msgt,(si)) (7)

ct,(oi) = GRUe(ct−1,(oi),msgt,(oi)) (8)

ct,(ri) = GRUr(ct−1,(ri),msgt,(ri)), (9)

where GRU can be replaced by other RNN models.
2) Long-term Memory Module: Despite its ability to keep

track of recent trends of events, an RNN-based memory mod-
ule only has short-term memory and is not able to memorize
key information for a long time. However, we believe long-
term information is an important statistical metric of past data.
So we propose a long-term memory module that “forces” the
model to remember the information from all previous events.

First we create a memory matrix for all entities and rela-
tions, M ∈ R(N+K)×P and initialize these embedding vectors
as zeros, where P is the embedding size. Specifically, mv

refers to the memory of an entity v (it can be either a subject
or an object), and cr refers to the memory of a relation r. At
time step t > 0, the history of each entity v is updated when
it appears in the current time stamp:

mt,(v) = (mt−1,(v) · (t− 1) +Whzt,(v))/t, (10)

where · represents multiplication operation, and Wh is a
trainable parameter. In this way, the memory for each entity
can always keep the average over past time steps, and all past
time steps contribute equally. By doing so, the module is able
to remember information learned over a long history.

If an entity v does not appear in the current time, we update
the history embedding (i.e., memory) as follows:

mt,(v) = (mt−1,(v) · (t− 1))/t. (11)

By doing so, we “shrink” the memory embedding of the
entity by a scaled factor (t − 1)/t such that the memories
also record the frequency of the entity. It is intuitive that the

memory embedding of a high-frequency entity should have
larger values compared with less frequent entities. It is worth
noting that when t is large, the memory embedding of an entity
will become close to zero if this entity has not appeared for a
long time. In such case, an alternative divider function such as
log(t) could be applied instead of t. Similarly, we also update
the history embedding for each event type (relation).

3) Dynamic Text-enhanced Knowledge Graph Learning:
The cache and memory modules provide compact representa-
tions of entities and relation types learned from past events.
However, they cannot provide us fine-grained information
about events in a more recent history window (e.g., past few
days). These events often play an important role in predicting
the occurrence of target events. Thus, we introduce a module
that encodes events in the last few days as dynamic knowledge
graphs. We organize events that happened on each day as a
discrete snapshot of a knowledge graph. Let the length of
historical window be h days, such that there are h snapshots
Gt+1, ...,Gt+h with each of them modeling the events at time
t+ i (i ∈ {1, 2...h}).

For each of the graph snapshots Gt+i, we aim to learn the
entities’ embeddings in an integrated graph model through
both their interactions/relations and the associated texts de-
scribing these interactions. Thus, we modify the aggregation
and update functions in CompGCN [33] such that it can well
combine text information during message passing processes.
We name the modified version as Text-CompGCN. A two-
layer Text-CompGCN model is applied to learn the embed-
dings of nodes and edges. At layer l+1, the embedding vector
of a node v is learned as:

h(l+1)
v = f(

∑
(r,u,f)∃(v,r,u,f)∈Gt+i

W(l)
q ϕ(h(l)

u ,o(l)
r) ∥W(l)

f f),

(12)
where h

(l)
u and o

(l)
r donate the features of node u and event

type r learned at l-th layer, W(l)
q is a trainable parameter for

aggregating node and edge features at l-th layer, ϕ() represents
a composition operation. W

(l)
f is a trainable parameter for

aggregation text features. f() is a activation function. The
embedding vector of a event type r is learned as:

o(l+1)
r = W(l)

e o(l)
r ∥W

(l)
f f , (13)

where W
(l)
e is a trainable parameter for aggregating event

type features at l-th layer. At the first layer, we initialize the
embedding vectors as follows:

h(0)
v = ct,(v) ∥mt,(v) ∥ h′

v (14)

o(0)
r = ct,(r) ∥mt,(r) ∥ o′

r, (15)

where ct,(v) and ct,(r) are cache vectors for node v and event
type r learned from previous timestamps, mt,(v) and mt,(r)

are the corresponding memory vectors. h′
v and o′

r are learnable
embeddings of node v and event type r. After the aggregation
process, we obtain the embedding matrices for all entities as
Ht+i ∈ R|Et+i|×d, where Ei is the set of entities appears in

the snapshot Gt+i; and we get a graph-level representation of
the snapshot through a element-wise max pooling operation:

hGt+i
= maxpool(Ht+i) (16)

After we get graph-level embeddings for all snapshots, a
recurrent encoder is applied to learn through the temporal
information and obtain a representation of the time series
t+ 1, ..., t+ h:

gt+h = RNN(hGt+h
,gt+h−1) ∈ Rd, (17)

Finally, we make a prediction for the target event at time
t+ h+∆t:

ŷ = P(yt+h+∆t|X1:t+h) = σ(Wγgt+h) ∈ R, (18)

where Wγ ∈ Rd is the parameter of the linear layer, and σ
represents the sigmoid activation function. Since it is a binary
classification problem, we choose Binary Cross Entrophy as
the loss function:

−
n∑

i=0

(
yi log(ŷi) + (1− yi) log(1− ŷi)

)
, (19)

where yi is the ground truth of i-th sample.

Algorithm 1 The Proposed Method MTG
1: Input: Event summaries E1, ...ET , temporal event graphs
G1, ...GT , pre-trained news text embeddings

2: Output: A trained binary classifier for predicting target
events in the future: f : (E1:t;Gt+1:t+h)→ ȳt+h+∆t

3: b← number of time steps for backpropagation
4: n← (T − h)/b
5: for epoch = 0 to num epochs do
6: Initialize cache C(0) and memory M(0) matrix
7: for i = 0 to n do
8: initialize loss l = 0
9: for j = 0 to b do

10: t← i× b+ j
11: With the event summaries Et:
12: Update C(t) based on Eq. (2-9)
13: Update the M(t) based on Eq. (10-11)
14: Construct feature vectors Eq. (14-15)
15: With the event graphs Gt+1,...,Gt+h:
16: hGt+1 , ...,hGt+h

← message passing
17: based on Eq. (12), (13), and (16)
18: gt+h ← apply recurrent encoder with Eq. (17)
19: Compute P(yt+h+∆t) with Eq. (18)
20: l← l+ loss computed based on Eq. (19)
21: end for
22: Backpropogate error and update model parameters
23: Detach cache and memory matrix
24: end for
25: end for

An overview of MTG is provided in Figure 2. We also
present the training steps of MTG in Algorithm 1. In the
training process, we first initialize the cache and memory

TABLE II
STATISTICS OF DATA. POSITIVE INDICATES THE RATIO OF POSITIVE

SAMPLES WHERE PROTEST EVENTS OCCURRED. EVENTS, ENTITIES AND
EVENT TYPES INDICATE TOTAL NUMBER OF EVENTS, ENTITIES AND

EVENT TYPES IN EACH DATASET.

Dataset Positive Events Entities Event Types

Bangkok (Thailand) 40.1% 41,274 2,000 204
Cairo (Egypt) 62.5% 97,341 3,714 219
Moscow (Russia) 54.0% 217,834 5,833 233
New Delhi (India) 53.3% 95,222 3,245 213

matrix (line 6). At each timestamp t, we update the caches
and memories with event summaries at t (line 11-13). We then
construct feature vectors for entities and edge types with the
updated caches and memories (line 14). Next, we aggregate
event graphs with text features at t + 1 to t + h with the
proposed text-CompGCN in a recurrent network. We make
a prediction for the target event at yt+h+∆t (line 15 to 18)
and compute the loss (line 19). For every b timestamps, we
backpropogate the error and detach the memory and cache
tensors from the loss computation for backpropogation to
improve computational efficiency (line 21-22).

V. EXPERIMENT SETUP

A. Dataset

The experiments are performed on four real-world datasets
collected from the Integrated Conflict Early Warning System
(ICEWS) [34]. ICEWS contains the political events and their
associated news. Events are classified into 20 main categories
and subcategories based on the Conflict and Mediation Event
Observations (CAMEO) guidelines. For each event, the dataset
records its source entity, target entity, event type, date, and a
corresponding piece of news text to describe the details of the
event. In this paper, we investigate four locations from differ-
ent countries, including Bangkok (Thailand), Cairo (Egypt),
Moscow (Russia), and New Delhi (India) from 2010-2016.
The time granularity of each timestamp when constructing
a sample is one day for all datasets. We train and evaluate
MTG as well as other baseline models on these four datasets.
The statistics of the datasets are presented in Table II.

B. Training Setup

set 1

set 2

set 3

set 4

set 5

Training

Validation

Test

Time

Fig. 3. A demonstration of the Walk-forward validation method.

Each dataset is split to training, validation, and test sets with
a 80%, 10%, 10% ratio. A common method is to split the

dataset by chronological order. However, observing the fact
that the distribution of target events shifts over time, there
are two major drawbacks for such split: first the information
learned from training samples can be “outdated” due to the
large gap between the training and validation/test samples.
Second, the evaluation on only one set of test samples may
not be comprehensive enough to demonstrate the overall
performance of the model on different distributions. Inspired
by Walk-forward [35] validation method, we choose five
different sets of validation/test samples chronologically. A
demonstration of the process is provided in Figure 3. We order
the data samples by ascending time. We choose the first 20%
data as the first set. Within this set, we chose the first 16%
as training and the last 4% data as validation and test sets.
Next, we move on to the second set which contains the first
40% of all data samples, similarly, we use the first 36% as
training and the last 4% as validation/test. We continue this
until we get to the last set (the full set). By doing so, we
have a total of 20% samples for validation/test and we reduce
the gap between training and validation/test samples so that
the learned information is more up to date. Also it is a fairer
evaluation as the total test set covers samples from different
years. Another advantage of such an evaluation scheme is that
eventually more samples are incorporated for training without
sacrificing the amount of validation or test samples.

C. Comparation Methods

We compare MTG with several baseline models. Among the
models, CompGCN+RNN and TGN use event KGs as inputs;
DynamicGCN and T-GCN use word graphs; Glean uses both
event KGs and word graphs; LSTM and TGN use long-term
information.

• Logistic Regression (LR). We utilize two different types
of input for this model: LRevent uses accumulative counts
of different event types in the short-term historical win-
dow as input features. LRtext uses the accumulative word
counts of event descriptions (news).

• Deep Neural Network (DNN). We build a DNN with
three dense layers. Similar to LR, we use two different
types of input for this model. DNNevent uses the same
features as LRevent while DNNtext uses the same features
as LRtext. The sizes of the hidden layers are 256 and 64.

• Long Short-term Memory (LSTM) model uses the time
series of previous timestamps that summarizes the counts
of different event types of each day as input features. The
size of the hidden layer is 100.

• CompGCN+RNN [33] is a temporal graph-based model
that combines CompGCN with RNN. The feature size for
entities and event types is 128.

• Temporal Graph Network (TGN) [17] makes predic-
tions based on long-term information learned from past
events with a continuous dynamic graph-based model.
The feature size for entities and event types is 128.

• DynmaicGCN [6] makes predictions with dynamic word
graphs constructed from news sentences in a short-term
historical window. The word embedding size is 100.

• Temporal Graph Convolutional Network (T-
GCN) [36] combines GCN with RNN. The same
input features as DynamicGCN are used.

• Glean [7] makes predictions with both dynamic event
knowledge graphs in a short-term window and text graphs
built from the news texts. The feature size for entities and
event types is 128.

D. Hyper-parameter setting

We utilize a pre-trained Bert model [30], [31] to generate a
384-dimensional sentence embedding for each piece of news
text. For MTG, we set both cache size and memory size as
32, entity and relation embedding size as 64, and the size of
node/edge features as 128. For CompGCN+RNN, Glean, and
TGN models, we also set the size of node and edge features
as 128. We set both the lead time and the prediction window
as 1 day. For the methods considering short-term interactions
of events, we set the history window as 7 days.

E. Evaluation Metrics

We use below metrics to evaluate the performance of MTG:
• F1 score is the harmonic mean of precision and recall.
• BACC stands for balanced accuracy score; it quantifies

the sensitivity and specificity of the classifier and is
often used when dealing with unbalanced datasets. The
sensitivity, specificity, and BACC are defined as follows:

sensitivity =
TP

TP + FN
, (20)

specificity =
TN

TN + FP
, (21)

BACC =
sensitivity + specificity

2
, (22)

where TP, TN, FP, and FN are true positive rate, true
negative rate, false positive rate, and false negative rate.

VI. EXPERIMENTAL RESULTS

A. Prediction Performance

We evaluate the performance of MTG and other baseline
models on four datasets. The overall prediction results are
presented in Table III. We group the methods based on their
inputs: only events, only texts, and both events and texts. The
results show that MTG outperforms all the baseline methods
in terms of F1 and BACC score across all datasets. Compared
to the best baseline method, MTG achieves 3.0% and 2.6%
of relative gain in terms of F1 and BACC on average. We
observe that the prediction performance of the DynamicGCN
model is not as good as the original paper [6]. We infer
that this is caused by the different experimental setting: in
our setting, first, we do not filter samples with less events
as the original paper did. Second, for each set in the walk-
forward validation, we split the training, validation, and test
samples by chronological order; However, the original Dynam-
icGCN paper shuffled all the samples and chose test samples
randomly. In addition, Glean does not show its superiority
as reported in the original paper [7] when compared with

THA EGY RUS IND
Dataset

0.65

0.70

0.75

0.80

0.85

F1

base
w/o text
w/o text or
 memory

THA EGY RUS IND
Dataset

0.55

0.60

0.65

0.70

0.75

0.80

0.85

BA
CC

base
w/o text
w/o text or memory

(a) F1 (b) BACC

Fig. 4. Ablation study on the text feature and the memory module.

baselines such as T-GCN; we infer that this is due to the
different datasets, prediction tasks, and experimental settings
we use. We also observe that event-based models in general
present more stable results compared with text-based models.
The LRtext model performs poorly in the Egypt and Russia
datasets, but outperforms most event-based methods in the
Thailand dataset. We infer that rich semantic information
extracted from news sentences can be potentially useful for
predicting future events. Thus, we claim that it is beneficial
to combine both event and text features in a unified model.
That also explains why MTG that considers both events and
text features achieves better performance. Moreover, we notice
that MTG defeats the baselines that only consider short-term
histories. Owing to the vanishing gradient problem, LSTM and
TGN do not perform well even though they consider long-
term histories. Thus we conclude that MTG achieves the best
performance attributable to its ability of efficiently capturing
and preserving long-term event and text information.

B. Ablation Study

To examine the effectiveness of the components of MTG ,
we conduct an ablation study by: 1) removing the text features
from MTG (w/o text); this is to explore the effectiveness of
adding text features. 2) removing both text features and the
memory module from MTG (w/o text or memory). Under this
setting we set the cache size as 64 such that the feature size
remains unchanged. This is to explore the effectiveness of the
proposed memory module. The comparison results between
the two variations and the original model (base) in terms of
BACC and F1 scores are provided in Figure 4. The F1 score
and BACC drop for all datasets when text and memory are
both removed.

C. Model Complexity

We compare the number of parameters of MTG and the
baseline methods as Table IV. For all event graph-based
models, we set the feature size for the entities and event
types as 128; and for the text graph based-models, we set
the dimension of word embeddings as 100. Compared with
CompGCN+RNN and Glean, MTG has less parameters as
it composes entity and event type features with caches and
memories, which involve less trainable parameters.

TABLE III
EVENT FORECASTING RESULTS OF MTG VERSUS BASELINES ON TEST SETS. F1 AND BACC ARE EVALUATED OVER FIVE TEST SETS FOR EACH

DATASET. % RELATIVE GAIN INDICATES THE GAIN OF MTG COMPARED TO THE BEST BASELINE.

Input Method Thailand Egypt Russia India

F1 BACC F1 BACC F1 BACC F1 BACC

with events LRevent 0.701 0.750 0.785 0.643 0.658 0.539 0.607 0.634
DNNevent 0.691 0.750 0.765 0.672 0.591 0.541 0.677 0.647
LSTM 0.688 0.753 0.787 0.700 0.580 0.481 0.574 0.561
CompGCN+RNN 0.632 0.706 0.775 0.697 0.661 0.545 0.648 0.579
TGN 0.667 0.745 0.748 0.683 0.639 0.508 0.700 0.678

with texts LRtext 0.736 0.804 0.667 0.680 0.574 0.467 0.588 0.629
DNNtext 0.736 0.804 0.707 0.701 0.627 0.534 0.564 0.623
DynamicGCN 0.500 0.627 0.628 0.600 0.423 0.515 0.606 0.611
T-GCN 0.718 0.781 0.634 0.663 0.515 0.464 0.589 0.624

with events+texts Glean 0.658 0.714 0.780 0.701 0.670 0.556 0.598 0.588
MTG 0.770 0.813 0.814 0.712 0.673 0.597 0.726 0.679
% relative gain 4.6% 1.2% 3.4% 1.6% 0.5% 7.4% 3.7% 0.1%

TABLE IV
COMPARISON OF MODEL PARAMETERS ON THE THAILAND DATASET. FOR

GLEAN, COMPGCN+RNN, TGN AND MTG , DIMENSION IS THE
EMBEDDING DIMENSION OF ENTITIES AND EVENT TYPES. FOR
DYNAMICGNN AND TGCN, DIMENSION IS THE SIZE OF WORD

EMBEDDINGS.

Model Dimension #. Parameter

LRevent − 205
LRtext − 31,079
DNNevent − 68,993
DNNtext − 7,972,737
LSTM − 122,501
CompGCN+RNN 128 1,061,407
TGN 128 616,322
DynamicGCN 100 872,379
Glean 128 1,265,004
T-GCN 100 1,061,407
MTG 128 736,062

D. Hyper-parameter Sensitivity

1) Lead time: We evaluate the sensitivity of MTG on
different lead time values (1, 3, and 5 days). The performance
of MTG in term of F1 score vs. the best performed baseline
across all four countries are provided in Figure 5. The results
show that MTG performs consistently better than the baseline
methods. We also observe that the models tends to have
better performance when the lead time is 3 or 5. This can
be explained by the fact that there is often a delay between
the triggers and the occurrence of events.

2) Feature size: We evaluate the sensitivity of the perfor-
mance of MTG with different feature sizes of the entities and
relations. The ratio between the components (as in Eq. (14)
and Eq. (15)) of the features remains unchanged. We vary
the feature size to 32, 64, 128 and 256. The performance of
MTG in terms of F1 and BACC scores across four datasets
are provided in Figure 6. We observe that in general the model
tends to have a better performance with greater feature sizes.
However, it becomes less sensitive at a certain point. For
Thailand, Egypt and Russia, an increasing feature size can

1 3 5
leadtime

0.5

0.6

0.7

0.8

0.9

F1
MTG
Best baseline

1 3 5
leadtime

0.5

0.6

0.7

0.8

0.9

1.0

F1

MTG
Best baseline

(a) Thailand (b) Egypt

1 3 5
leadtime

0.5

0.6

0.7

0.8

F1

MTG
Best baseline

1 3 5
leadtime

0.5

0.6

0.7

0.8

F1

MTG
Best baseline

(c) Russia (d) India

Fig. 5. Comparison between the F1 scores of MTG and the best-performed
baseline for lead time = 1, 3, and 5.

improve the performance significantly. For India, a feature size
over 64 does not affect the performance remarkably.

3) Cache and memory sizes: We also investigate the sen-
sitivity of MTG on different ratios between the cache and
memories. We keep the sum of cache and memory size as
64, but change the memory size to 8, 16, 32, and 48. The
performance of MTG in terms of F1 and BACC scores across
four countries are provided in Figure 7. We observe that in
general, the memory size does not affect the performance when
it contributes less than half (32) of the total size; however, the
model tends to perform worse when the it reaches 48.

E. Analysis of learned caches and memories

We visualize the evolution of learned cache and memory
vectors through time for Thailand. The heatmaps of the caches
and memories for both entities and the target relation type
(protest) are shown in Figure 8; a deep color represents a
higher value. Each row of the cache and memory heatmaps

32 64 128 256
Feature size

0.4

0.5

0.6

0.7

0.8

0.9
M

et
ric

 V
al

ue

F1
BACC

32 64 128 256
Feature size

0.4

0.5

0.6

0.7

0.8

0.9

M
et

ric
 V

al
ue

F1
BACC

(a) Thailand (b) Egypt

32 64 128 256
Feature size

0.4

0.5

0.6

0.7

0.8

M
et

ric
 V

al
ue

F1
BACC

32 64 128 256
Feature size

0.4

0.5

0.6

0.7

0.8

M
et

ric
 V

al
ue

F1
BACC

(c) Russia (d) India

Fig. 6. Prediction results of MTG with varying feature sizes.

8 16 32 48
Memory size

0.5

0.6

0.7

0.8

0.9

M
et

ric
 V

al
ue

F1
BACC

8 16 32 48
Memory size

0.6

0.7

0.8

0.9

M
et

ric
 V

al
ue

F1
BACC

(a) Thailand (b) Egypt

8 16 32 48
Memory size

0.4

0.5

0.6

0.7

0.8

M
et

ric
 V

al
ue

F1
BACC

8 16 32 48
Memory size

0.5

0.6

0.7

0.8

0.9

M
et

ric
 V

al
ue

F1
BACC

(c) Russia (d) India

Fig. 7. Prediction results of MTG with varying memory sizes.

represents element-wise max-pooled values across all entities.
We plot the caches and memories every 100 days for the first
1800 days, and we only present the first 20 dimensions of
vectors for visualization. We observe that the heatmaps of
memories are relatively stable and consistent through time.
Conversely, the cache embeddings have gradual changes over
time. This can be explained by the assumption that memories
summarize previous information in a long-run; but caches
capture recent tendencies and hence experience more oscilla-
tions. We also detect local maximums around 200-th to 300-th
days on all four heatmaps, which correspond to the increasing
number of protest events in that period of time.

VII. BROADER IMPACTS

Our research focuses on the task of predicting societal
events. To forecast such events prior to their occurrence can
help decision-makers to take preventive strategies to minimize
people’s loss. By investigating patterns in historical data,

First 20 features

0

3

6

9

12

15

18

Ti
m

e
(1

00
 d

ay
s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

First 20 features

0

3

6

9

12

15

18

Ti
m

e
(1

00
 d

ay
s)

0.00

0.05

0.10

0.15

0.20

0.25

(a) cache of entities (b) memory of entities

First 20 features

0

3

6

9

12

15

18

Ti
m

e
(1

00
 d

ay
s)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

First 20 features

0

3

6

9

12

15

18

Ti
m

e
(1

00
 d

ay
s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

(c) cache of protest (d) memory of protest

Fig. 8. Heatmap visualization of cache and memory vectors over time.

this work can also provide people a better understanding
on the causes and impacts of events. Thus, this study is
of significance for computational social science and human
behavior analysis.

This work also presents new neural network based frame-
works for temporal graph sequences. The proposed techniques
can be easily adapted to other domains such as chemistry,
finance, and social networks.

VIII. CONCLUSION

In this paper, we present a novel dynamic knowledge graph
learning framework for event prediction. Our proposed model
simultaneously considers long-term, medium-term, and short-
term historical information. We also present a new end-to-
end approach to integrate text information in event graphs
coherently. We demonstrate the effectiveness of the proposed
method on real-world datasets, and perform sensitivity analy-
ses and ablation studies under different settings.

In the future, we plan to investigate different types of tem-
poral graphs in various applications, such as social networks
or product review networks. Moreover, we will explore new
methods that model the evolution of multimodal data and their
dependencies at the same time.

ACKNOWLEDGEMENT

This work is supported in part by the US National Science
Foundation under grants 1948432 and 2047843.

REFERENCES

[1] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu, “Graph
learning: A survey,” IEEE Transactions on Artificial Intelligence, vol. 2,
no. 2, pp. 109–127, 2021.

[2] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[3] S. Min, Z. Gao, J. Peng, L. Wang, K. Qin, and B. Fang, “Stgsn —
a spatial–temporal graph neural network framework for time-evolving
social networks,” Knowledge-Based Systems, vol. 214, p. 106746, 2021.

[4] B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal
of Network and Computer Applications, vol. 185, p. 103076, 2021.

[5] W. Chen, M. Jiang, W.-G. Zhang, and Z. Chen, “A novel graph
convolutional feature based convolutional neural network for stock trend
prediction,” Information Sciences, vol. 556, pp. 67–94, 2021.

[6] S. Deng, H. Rangwala, and Y. Ning, “Learning dynamic context graphs
for predicting social events,” in Proceedings of the 25th ACM SIGKDD,
ser. 9. New York, NY, USA: Association for Computing Machinery,
2019, p. 1007–1016.

[7] ——, “Dynamic knowledge graph based multi-event forecasting,” in
Proceedings of the 26th ACM SIGKDD, 2020, p. 1585–1595.

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” 2017.

[9] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: Graph representation learning with generative
adversarial nets,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, Apr. 2018.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[11] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017.

[12] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in The Semantic Web, A. Gangemi, R. Navigli, M.-E. Vidal,
P. Hitzler, R. Troncy, L. Hollink, A. Tordai, and M. Alam, Eds. Cham:
Springer International Publishing, 2018, pp. 593–607.

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2017.

[14] N. N. Daud, S. H. Ab Hamid, M. Saadoon, F. Sahran, and N. B. Anuar,
“Applications of link prediction in social networks: A review,” Journal
of Network and Computer Applications, vol. 166, p. 102716, 2020.

[15] A. K. Singh and L. Kailasam, “Link prediction-based influence maxi-
mization in online social networks,” Neurocomputing, vol. 453, pp. 151–
163, 2021.

[16] L. Ou-Yang, D.-Q. Dai, X.-L. Li, M. Wu, X.-F. Zhang, and P. Yang,
“Detecting temporal protein complexes from dynamic protein-protein
interaction networks,” BMC Bioinformatics, vol. 15, p. 335, 2014.

[17] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
2020.

[18] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognition, vol. 97, p. 107000, 2020.

[19] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Captur-
ing network dynamics using dynamic graph representation learning,”
Knowledge-Based Systems, vol. 187, p. 104816, 2020.

[20] M. Xu, “Understanding graph embedding methods and their applica-
tions,” 12 2020.

[21] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and
P. Poupart, “Representation learning for dynamic graphs: A survey,”
Journal of Machine Learning Research, vol. 21, pp. 1–73, 2020.

[22] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network,” CoRR, vol. abs/1808.03314,
2018.

[23] R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs,” 2017.

[24] H. Dai, Y. Wang, R. Trivedi, and L. Song, “Deep coevolutionary
network: Embedding user and item features for recommendation,” 9
2016.

[25] L. Qu, H. Zhu, Q. Duan, and Y. Shi, “Continuous-time link prediction
via temporal dependent graph neural network,” The Web Conference
2020 - Proceedings of the World Wide Web Conference, WWW 2020,
pp. 3026–3032, 4 2020.

[26] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur,
S. Wu, C. Smyth, P. Poupart, and M. Brubaker, “Time2vec: Learning a
vector representation of time,” 2019.

[27] F. Qiao, P. Li, X. Zhang, Z. Ding, J. Cheng, and H. Wang, “Predicting
social unrest events with hidden markov models using gdelt,” Discrete
Dynamics in Nature and Society, vol. 2017, 2017.

[28] B. Cortez, B. Carrera, Y. J. Kim, and J. Y. Jung, “An architecture
for emergency event prediction using lstm recurrent neural networks,”
Expert Systems with Applications, vol. 97, pp. 315–324, 5 2018.

[29] X. Wu, C. Huang, C. Zhang, and N. V. Chawla, Hierarchically Struc-
tured Transformer Networks for Fine-Grained Spatial Event Forecasting.
New York, NY, USA: Association for Computing Machinery, 2020, p.
2320–2330.

[30] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” CoRR, vol. abs/1908.10084, 2019.

[31] “Sentencetransformers documentation (https://www.sbert.net/index.html).”
[32] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[33] S. Vashishth, S. Sanyal, V. Nitin, and P. P. Talukdar, “Composition-
based multi-relational graph convolutional networks,” ArXiv, vol.
abs/1911.03082, 2020.

[34] “Icews coded event data - integrated crisis early warning system (icews)
dataverse.”

[35] M. Y. Hu, G. P. Zhang, C. X. Jiang, and B. E. Patuwo, “A cross-
validation analysis of neural network out-of-sample performance in
exchange rate forecasting,” Decision Sciences, vol. 30, no. 1, pp. 197–
216, 1999.

[36] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9,
pp. 3848–3858, 2020.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

APPENDIX A
SUPPLEMENTAL EQUATIONS

A. Temporal Graph Attention
We use an L-layer temporal graph attention module [17], [20] to aggregate

the graph G and computes the node embedding for v.

zt,(v) = emb(Gt, v, t) = h
(L)
t,(v)

, (23)

where h
(L)
t,(v)

is the learned embedding for v at L-th layer. At l-th layer:

h
(l)
t,(v)

= MLP(l)(h
(l−1)
t,(v)

∥ h̃l
v), (24)

h̃
(l)
t,(v)

= MultiHeadAttention(l)(q
(l)
t ,K

(l)
t , V

(l)
t), (25)

q(l)t = h
(l−1)
t,(v)

, (26)

K
(l)
t = [h

(l)
t,(u)

∥ ct−1,(r) for (r, u)∃(v, r, u) ∈ Gt], (27)

K
(l)
t = V

(l)
t , (28)

where q
(l)
t , K(l)

t , and V
(l)
t are query, keys, and values for the multi-head

attention [37]. The node embedding is initialized as the caches in the previous
timestamp:

h
(0)
t,(v)

= ct−1,(v). (29)

	Introduction
	Related Work
	Dynamic Graph Learning
	Event Forecasting

	Problem Formulation
	Proposed Method
	Model Framework
	Cache Module
	Long-term Memory Module
	Dynamic Text-enhanced Knowledge Graph Learning

	Experiment Setup
	Dataset
	Training Setup
	Comparation Methods
	Hyper-parameter setting
	Evaluation Metrics

	Experimental results
	Prediction Performance
	Ablation Study
	Model Complexity
	Hyper-parameter Sensitivity
	Lead time
	Feature size
	Cache and memory sizes

	Analysis of learned caches and memories

	Broader Impacts
	Conclusion
	References
	Appendix A: Supplemental equations
	Temporal Graph Attention

