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Abstract—Using observational event data to forecast societal
events has been extensively studied in data-driven models. Prior
work focuses on correlational analysis and ignores the importance
of causal relationships behind events. Understanding the causality
of events helps one infer future events by pinpointing potential
triggers. In light of complex and dynamic social environments,
it is difficult to comprehensively analyze the causes of societal
events. In this work, we study the causal relationship between
topics and events where topics are extracted from event-related
documents. These topics represent probability distributions of
words. We introduce a method to discover topics that have
a causal effect on future events of interest. Next, we propose
a causality-enhanced dynamic heterogeneous graph learning
framework where topics, documents, and words are represented
as nodes with changing edges. To handle the temporal depen-
dencies of dynamic graphs, we introduce a temporal information
learning module that updates node representations based on their
evolving context and heterogeneous semantics. We conduct ex-
tensive experiments on four real-world datasets and demonstrate
the effectiveness of our method in societal event prediction.

Index Terms—Event Forecasting, Causality, Heterogeneous
Graph Learning

I. INTRODUCTION

Societal events such as protests largely affect our daily lives.
Understanding hidden social patterns and anticipating such
events is important to many stakeholders, including investors,
suppliers, and governments. Many efforts have emerged to
achieve high accurate societal event prediction. However, pre-
vious approaches mainly focused on correlation-based studies,
i.e., measuring associations between feature and target vari-
ables. Bringing causality into predictive research is promising
because knowing underlying causes of events helps humans
reason about future events. Involving causal information in
predictive methods may also help improve forecast accuracy.

There are several attempts to incorporate causal information
into predictive models for improving prediction accuracy.
Some studies introduced causal objectives such as maximizing
causal effects [1] in learning objectives to improve the predic-
tive ability of recommender systems. Other work introduced
pre-learned causal effects as prior knowledge to guide the
model training, in disease diagnosis prediction [2], and com-
puter vision tasks [3]. This suggests the potential benefits of
leveraging causal information to enhance event prediction. Yet,
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few studies have investigated causal information in societal
event forecasting, and the task presents many challenges:

« The causal factors that lead to societal event occurrence are
very complex. In a dynamic social environment, events are
generally triggered by a combination of factors, and different
events are causally affected by various factors.

« Exploiting causal information about events has the potential
to help predict future events, as past causal factors are very
likely to trigger future events. However, how to effectively
harness causal information in data-driven models is a diffi-
cult and under-explored task.

e Modeling temporal information has shown advantages in
accurately predicting societal events in dynamic social envi-
ronments [4], [5]. Thus, it is important to develop models
that learn temporal dependencies and capture evolving con-
text information.

To address the above challenges, we propose a causality-
enhanced dynamic heterogeneous graph learning model for
predicting societal events. Recently, graph representation
learning has been successful in various fields. In societal event
forecasting, researchers have proposed to model graph-based
data, such as word graphs [5] and knowledge graphs [6], [7].
Inspired by such achievements, we propose to incorporate
node causality in graph learning, i.e., to highlight nodes that
are potential causal factors for the occurrence of future events
of interest. During the graph learning, causal message passing
enables nodes to learn richer contextual features than tradi-
tional correlation-based models. To better distinguish between
causal nodes and others, we study heterogeneous graphs that
include different types of nodes where some nodes preserve
causal information and some do not. Compared with homoge-
neous graphs, heterogeneous graphs present richer relational
characteristics. We develop a dynamic heterogeneous graph-
based model to learn evolving information over historical
timestamps. We also exploit causal information in graph learn-
ing (i.e., causal nodes) to enhance representational learning.
Our contributions are summarized as follows:

« We propose to study causal factors of societal events in the
form of topics. We consider a topic as a learned probability
distribution of words, which contains richer semantic infor-
mation than a single word or a single event. We introduce



a causal inference pipeline for discovering causal topics of
future events of interest based on observational event data.

« We design a dynamic heterogeneous graph learning frame-
work where historical topics, documents, and words are
represented as nodes with evolving edges. It differs from
existing heterogeneous graph methods that learn node em-
beddings in static graphs or dynamic graphs with only
evolving nodes.

« We introduce a causality-aware message passing module
and a correlation-based message passing module in the
proposed framework to incorporate discovered causal topics
and heterogeneous semantic information.

We evaluate our method on real-world event datasets com-
pared with several state-of-the-art models. We demonstrate the
strengths of our approach in event prediction and also discuss
the potential impacts and limitations of this work.

II. RELATED WORK
A. Event Forecasting

Event forecasting focuses on predicting future events based
on past social indicators, such as published news articles
or social media data. Event forecasting has been studied in
different fields such as stock markets [8], epidemics [9], crime
analysis [10], and civil unrest movements [4]. The methods
studied include traditional statistical models such as Hidden
Markov Models [11], [12], machine learning approaches such
as logistic regression [4], [13], and deep learning models [5]-
[71, [14], [15]. Deep learning methods have achieved great suc-
cess in predicting societal events. An attention-based spatio-
temporal learning framework was proposed to model dynamic
patterns of citywide abnormal events [15]. Research on graph
neural networks for event prediction has also made remarkable
progress. A dynamic graph based approach was introduced to
forecast events and identify event-related context graphs [5].
Some researchers investigated relational graph data as a rich
source of context in event prediction [6], [7]. However, few
studies have explored causality in event prediction. In this
paper, we attempt to include causality in graph learning
which involves discovering causal information and developing
a predictive model based on causal information.

B. Heterogeneous Graph Learning

Heterogeneous graphs, which contain multiple types of
nodes or multiple types of edges, have become ubiquitous
in real-world scenarios, such as recommender systems and
bibliographic networks. Graph neural networks (GNNs) have
shown great success in processing graph-structured data for
prediction tasks. GNNs learn embeddings/hidden features for
each graph node by using topological information and passing
messages from neighboring nodes to the target node. Some
studies have attempted to extend GNNs to model hetero-
geneous graphs. The relational graph convolutional network
(RGCN) was introduced to model knowledge graphs by learn-
ing different weight matrices for each edge type [16]. A
composition-based multi-relational graph convolutional net-
work (CompGCN) [17] was proposed to embed both nodes

and relations/edges in a relational graph. Some researchers
proposed a heterogeneous graph neural network, which uses
random walk strategies to sample heterogeneous neighbors
of each node and use node type-specific recurrent networks
to integrate multimodal features [18]. The graph attention
network (GAT) was extended to learn different weights for
different edge types [19]. More recently, a transformer-like
heterogeneous graph model, heterogeneous graph transformer
(HGT), was proposed [20]. It learns node- and edge-type de-
pendent parameters to characterize the heterogeneous attention
over each edge. Such models focus on static heterogeneous
graphs or dynamic heterogeneous graphs with evolving nodes.
In this work, we introduce a novel heterogeneous graph
learning framework that handles dynamic graphs with evolving
edges. In addition, the proposed framework is able to leverage
equipped causal information for graph level predictions.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first formally define some important con-
cepts. Then we present preliminary knowledge about causal
inference and formulate our problem.

Definition 1. Heterogeneous Graph. A heterogeneous graph
is defined as a directed graph G C (V, &, A, R) with multiple
types of nodes and edges. Particularly, each node v € V is
associated with a node type 7(v): V — A and each edge e € £
is associated with an edge type ¢(e): £ — R. For example,
we have three different types of nodes: word, document, or
topic. We denote an edge as e = (u,v), indicating that edge
e connects node u and node wv.

Definition 2. Dynamic Heterogeneous Context Graph. A
heterogeneous context graph is a type of heterogeneous graph
where edges have timestamps. A timestamped edge (e,t) =
((u,v),t) denotes the connection of two nodes u and v at time
t. A heterogeneous context graph consists of all timestamped
edges with the same timestamp. We use G[t] C (V,E, A, R,T)
to denote the heterogeneous context graph att € T. A dynamic
heterogeneous context graph is built upon a sequence of het-
erogeneous context graphs in ascending time order represent-
ing dynamic contexts over time, e.g., {G[1],...,G[T]}. Note
that a dynamic heterogeneous context graph can have static
edges (and nodes), and such edges appear at all timestamps.

Definition 3. Event Forecasting. Given historical data X as
input features (e.g., news articles), learn a classifier f(X) —
Y that maps the input to a binary target variable ) € {0, 1}.
The target variable indicates whether a type of event (e.g.,
protest) will occur at a target location at a future time.

We construct a dynamic heterogeneous context graph from
historical news articles as input features to address the above
event forecasting problem. Given a city and a historical
window, we collect news articles reported during the historical
window time in this city to construct a graph. An example
of this graph is shown in Fig. 2a. We define three types
of nodes: word, topic, and document. The word nodes are
keywords extracted from the documents, and the topics are



obtained from a pre-trained topic model [21]. Different edge
types are defined for different node type pairs. We construct
timestamped edges based on the news articles reported in
the given timestamp. In detail, the edge weight between two
word nodes is determined by their positive pointwise mutual
information (PMI) scores [5], [22], and the edge weight
between a document node and a word node is defined by
TF-IDF [22]. The edge weight between a topic and a word
node denotes the probability of the word relating to that topic.
A similar edge weight relation applies to topic and document
nodes. The edge weight between two topic nodes denotes the
cosine similarity of these two topics, which are static and do
not change over time. Given the different semantic contexts of
each timestamp, the edges connecting words to words and/or
topics show recurring patterns. For example, a student rally
for educational reform occurs on day ¢ and happens again on
day ¢ + 5. Note that we assume each news article is unique
(i.e., the same article does not appear for multiple days), so the
edges between words and documents and the edges between
topics and documents are unique over time.

Next, we present some preliminaries on causal inference and
formulate our problem based on the aforementioned concepts.

Definition 4. Treatment Effect. Treatment effect refers to
the causal effect of a given treatment or intervention (e.g.,
the administering of a drug) on an outcome variable of
interest (e.g., the health of the patient). In the Rubin causal
model [23], the treatment effect measures the difference in
outcomes between a unit assigned to the treatment group and
a unit assigned to the control group. The average treatment
effect (ATE) measures the difference in the mean (average)
outcome between the treatment and control groups.

Definition 5. Propensity Score Matching (PSM). PSM is
a statistical matching technique that estimates the ATE of
a treatment by accounting for the covariates/confounding
variables (i.e., variables other than treatment that may affect
outcome) that predict receiving the treatment [24]. PSM
attempts to reduce the bias due to confounding variables that
could be found in an estimate of the treatment effect.

Problem Statement Based on the aforementioned defini-
tions, we aim to build an event predictor F' : X — Y
that takes a dynamic heterogeneous context graph {G[t —
k +1],..,G[t]} € X as input and estimates the occurrence
probabilities of a type of events (e.g., protest) in the future
ytHitH+A ¢ 01} € Y for a given location. A causal
node set 7 (i.e., causal topics) that has causal effects on the
occurrence of future events is discovered and identified in
the input graph. k£ > 1 is the size of the historical window,
indicating that the dynamic heterogeneous context graph is
built based on data during a k-size time frame. The prediction
window (t+1:¢+ 14 A) where A > 1 indicates the time
window that model forecasts the occurrence of events.

IV. METHODOLOGY

In this section, we present the technical details of our
proposed method. There are two major components in this

method: causal analysis of topics and the incorporation of
causal information into a dynamic heterogeneous graph model
for event prediction. Next, we elaborate on these two parts.

A. Causal Analysis

In this paper, we examine topics that have the potential
to trigger or hinder some future events (e.g., protests) in
a given location. We refer to these topics as causal topics.
Answering this question can help people understand cause-
and-effect relationships behind societal events. Ideal causal
identification is difficult to achieve because counterfactual
outcomes are not observable in the real world. In this study,
we employ techniques from causal inference literature that can
bring us closer to interpretable event analysis.

1) Discovering Causal Topics: We begin with a corpus
of news articles, including texts and timestamps reported in
different cities. We first obtain a collection of timestamps for
each city with sufficient news coverage during these times.
We create time windows for each timestamp and each city,
considering w days (historical window) before each timestamp
and m days after each timestamp (prediction window).
Treatment assignment. We then group these windows into
treatment and control groups based on whether the news
article collection at the given timestamp and city includes
a target topic j or not, denoted as Z/ € {0,1}. The target
topic is defined based on a pre-trained topic model given the
corpus. We denote the total number of topics as J. We define
covariates/confounders X as the frequency of unigrams in the
historical window. The outcome as a binary value Y € {0,1}
indicates whether an event of interest (e.g., protest) occurs in
the prediction window or not.

Propensity Score Matching. We use Propensity Score Match-
ing to obtain treated-controlled instance pairs. A propensity
score is the probability of an instance being assigned to a
particular treatment given observed covariates, i.e., P(Zj =
1/X). In the implementation, we learn a propensity score
estimator using logistic regression. We match each treated
instance with a controlled instance of similar propensity score
values. The matching operation is non-replacement, i.e., no
controlled instance is used more than once. The matching
procedure produces a treatment group and a control group of
the same size. We estimate the ATE based on the outcomes of
each matched instance pair. Formally, the ATE can be written
as E[Yzi—1 — Yzi—g], where Yyzi_1,Yzi_q are the outcomes
of a pair of treated and controlled instances, respectively.
Statistical test. Given the ATEs for all topics, we select the
causes by measuring their significance using two-tailed z-score
tests with a significance level of 99%. If the z-score of a topic
falls into the right tail (> 0), we consider it has a positive
causal effect. If it is in the left tail (< 0), we consider it has a
negative causal effect. We illustrate the causal topic discovery
procedure in Fig. 1.

2) Discovering Evolving and Multi-view Causal Topics:
Motivated by ever-changing social environments, we propose
to explore evolving causal topics that can reflect time-sensitive
causes. Following the procedures introduced in the previous
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Fig. 1: Illustration of the causal topic discovery process. Each
circle represents an instance. Each instance refers to a window
of time in a city. Blue circles indicate treated instances and
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section, we update the causal topics for each season (i.e., 3
months) in chronological order using time windows in the
past. In addition, topics can have long-term or short-term
causal effects. Based on this intuition, we vary the size of
the prediction window m (e.g., 3, 7, and 14) to obtain topics
that have causal effects on protests in different lengths of the
future. The size of a historical window w is set to 14 days.
We use 7 to represent the discovered multi-view causal topics.

B. Event Prediction Model

We propose a dynamic heterogeneous graph model with
causality enhanced node representations, HGC, to forecast
societal events. Inspired by a self-attention-based model Het-
erogeneous Graph Transformer (HGT) [20], our model is
developed to capture the temporal information underlying
dynamic heterogeneous context graphs with evolving edges.
Meanwhile, it can effectively model causal information to
improve model prediction. Figure 2b shows the overall archi-
tecture of the proposed model. The goal of the proposed model
is to apply message passing on the dynamic heterogeneous
context graph and reason about the occurrence of future events
of interest. The model can be decomposed into two main
parts: (1) Causality Enhanced Dynamic Message Passing
which computes a causally and temporally contextualized
representation for each node by aggregating messages from
heterogeneous source nodes; (2) Overall Aggregation which
generates a global embedding for final prediction.

1) The HGT framework: The HGT model is an attention-
based framework that learns node representations in hetero-
geneous graphs for node-level prediction and link prediction
tasks. The framework can be written as follows:

h! « AGG (ATT(u, e,v) - MSG(u, e,v)), (1)

VYueN (v),Ve€E(u,v)
where N (v) denotes all the source nodes of node v and
E(u,v) denotes all the edges from node u to v. There are

three basic operators in the framework: ATT denotes the

attention module, which calculates the importance of each
source node; MSG means the message module, which obtains
the message for the source node; and AGG is an aggregation
module, which aggregates the neighborhood attention message
of source nodes via some operators, €.g., mean or sum.

The HGT model handles dynamic heterogeneous graphs,
provided that the graph edges are fixed and the graph nodes
have different timestamps. The approach incorporates a learn-
able relative time embedding into the source node embedding,
where the relative time is the time gap between the source
and target nodes. However, the method cannot handle edges
that change over time, which is a critical feature of event-
related context graphs. For example, the connection of two
major entities recurring within a historical period can provide
important clues for future events.

2) Causality Enhanced Dynamic Message Passing: To
better capture the temporal dependencies in dynamic hetero-
geneous context graphs, we introduce a framework to model
the temporal information of each graph node in the context
of evolving edges. Furthermore, we propose causality-aware
message passing, which exploits the predetermined causal
node information from the causal analysis part. We first
design a temporal information learning module (TEM) that
incorporates embeddings of nodes learned in the past graph:

hy 1] < TEM(hy[t], b [< 1)), .
where h! [< t] € R? is the past states of node v, and hl[t] €
R< is learned from a combination module (COM):

b (1] « COM(o[1], <, ). 3)
The COM module combines two types of context information
obtained from graph message passing.
o Correlation-based message passing:

ol [t] AGG (ATT(u,e,v) - MSG(u,e)), (4)
VueNt(v),Ve€ Et (u,v)

where N*(v) denotes all the source nodes of node v at the ¢-th
heterogeneous context graph. E(u,v) denotes all the edges
from node u to v at the ¢-th heterogeneous context graph G[t].
The ATT, MSG, and AGG have similar functions as in the
HGT framework.

e Causality-aware message passing:

cllt] « AGG (C-ATT(u,v) - C-MSG(u, e)).
VYueN?t(v),Ve€ Et(u,v) 5)

The C-ATT estimates another importance score of each source
node given its causal identifier (i.e., causal or not). The C-
MSG computes another message vector for each source node.

a) Correlation-based Message Passing: In the hetero-
geneous context graph at time ¢, given a target node v, its
neighbors can be of different types, leading to different edge
types. We map target node v into a Query vector, and source
node u into a Key vector, and calculate their scaled dot product
to obtain the attention score. In our dynamic heterogeneous
context graph, the edge weight between two nodes is defined
by their associations, e.g., TF-IDF score between a word and
a document node or PMI score between two word nodes. This
information can be important when passing information from
the source node to the target node, especially in dynamic
graphs with evolving edges. For example, if a word-word
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Fig. 2: (a) An example of the dynamic heterogeneous context graph with three types of nodes: word, topic, and document. Topic
nodes have either positive, negative, or no causal effects. (b) The overall architecture of the proposed event prediction framework.
The proposed framework takes dynamic heterogeneous context graphs as input and learns node embeddings enhanced by causal
topics. Then, we aggregate the information of each type of node for event prediction via an output layer.

edge has a higher PMI score at time ¢ — 1 and a lower PMI
score at time ¢, the learned message should be different at
the two timestamps. Thus, we propose a novel method to
calculate attention scores in weighted heterogeneous graphs.
The attention scores are achieved by combining content-based
and prior-based associations. The content-based association
is evaluated based on the embedding of the source and
target nodes. The prior-based association depends on the edge
attributes and is calculated using the edge weight and an edge
type-specific weight vector. We adopt multi-head attention to
capture multiple hidden relationships for an edge. The h-head
attention for an edge (e, t) = ((u,v),t) can be written as:
h
ATT(u, e,v) = Softmax( | headjrr(u,e,v)) (6)
i=1
headirr (u, e, v) = ((wghfjl + weWo(e)) | (Wih, ™ )) /v

= ((Wen, )" (Wi, ")

content-based
+ (w@W¢(e) )T (WlKhifl) ) /\/E

prior-based

)
where is transposition and | means concatenation.
hi~! hi~! € R? are the embeddings of node u and v from the
[ — 1-th layer, respectively. The initial embedding of a node
(e.g. h?) is a pre-trained word embedding for a word node
and a randomly initialized embedding for topic and document
nodes. We define a generalized embedding for all document
nodes, since the number of documents can be infinite. w, € R
is the weight of the edge e and wy(.) € R# is the distinct
weight vector for the edge type ¢(e). }(,WZQ € R#*4 are
weight matrices for the i-th head that project the embedding
of the source node u and target node v into the i-th Key
and Query vector, respectively. d denotes the feature size.
Unlike the HGT framework, we ignore the unique edge-based
matrix used to handle possible different edge types. In a
heterogeneous context graph, the type of edge is defined by the
type of the two end nodes and is unique. For example, there

T

is only one type of edge between a word node and a topic
node. The edge weight between a topic node and a word node
indicates the probability of this word being associated with
this topic. Eq. 7 captures different semantic relationships of
different node pairs. Then, we concatenate h attention heads
together to get the attention vector for each node pair. We
apply a Softmax to get an attention score for each head.
For each node pair (u,v), the attention scores form a h-
dimensional vector, i.e., ATT(u,v) € R".

To calculate the message, we first map the source node v
into a Value vector and then apply a linear transformation on
the Value vector. The multi-head message for each edge with
h heads is as follows:

h
MSG(u,e) = ||

®)
i=1
where Wi, € R%*4 is the weight matrix that project the
embedding of the source node w into the i-th Value vector. The
matrix WS € R X% is edge type specific to incorporate
edge dependencies.
Then, in the AGG function, we use a mean operator to

aggregate the information from all neighbors:

1
t M ATT ‘M
o] = e Mean  (ATT(ue,v) MSG(u, e)), ¥

where the [t] denotes the node embedding obtained by learning
the ¢-th heterogeneous context graph.

b) Causality-aware Message Passing: We discover
causal topics from observational data and propose to incor-
porate such causal topics in heterogeneous graph learning.
Specifically, the causal information of topic nodes is prop-
agated over the graph through message passing. We also
use a self-attention approach to learn context-based causal
information, since causal topics generally have different effects
in different contexts. Suppose an edge (e,t) = ((u,v),t)
whose source node w is a topic. We use ¢(u) € {1,—1,0}
to denote the causal identifier of the source topic node u,
i.e., positive causal effect (¢(u) = 1), negative causal effect
(s(u) —1), or no causal effect (¢(u) = 0). The causal
identifier of the topic node is determined by the multi-view
causal topics obtained in Sec. IV-A2. Here, we define a weight

i1 l—1 MSG
(thu W¢<e>)v



matrix Fi w € R# X7 for learning causal information given
the causal identifier of node u. The multi-head attention in the
causality-aware message passing is }formally defined as below:
C-ATT(u, v) = Softmax( || headi- xrr(u,v))  (10)
i=1
(Weohy ™) T (Wekhy ™)
Y
S ) vd
where W¢ i, W’C_Q € Rr*? are weight matrices‘ for the i-th
attention head. The use of the weight matrix I‘z(u) aims to
propagate different causal information between nodes.

With the obtained attention, we propose a time-aware mes-
sage that incorporates a time embedding into the source node
embedding. It is motivated by the fact that causal topics
might have long-term or short-term effects, and including time
information can better capture time-aware causal information
in dynamic graphs. Inspired by the positional encoding in
Transformer [25], we define a fixed time embedding T'E[t] €
Ras follows:

TE[t](25) = sin(pos(t)/10000%*/?) (12)

TE[t](2541) = cos(pos(t)/10000%+1/) (13)

where s is the dimension index and d is the embedding

size. Each dimension of the time embedding corresponds to a

sinusoid. We use pos(-) to denote the position of the timestamp

t in the historical window, e.g., pos(t) = k given all historical

timestamps (¢t — k + 1,...,t). With the time embedding, we
formalize the calculation of the message as follows:

h X
C-MSG(u,e) = || (Wbl + TE)WENC) (14)
i=1

headé_ arT(U,v) =

where Wi, € R# >4 is the weight matrix for projecting the
embedding of the source node w into the :-th Value vector for
the causality-aware message passing. Wg'&’[SG € R#*7 is the
edge type based learnable matrix. In the AGG function, we
aggregate the information from all neighbors using the mean
operator:

cl[t] = Mean
VueNt(v),Ve€e Et (u,v)

(C-ATT(u, v) - C-MSG(u,€)).
5)
For the combination module, we use a simple summation

of the two types of messages followed by a ReLU function:
h! [t] = ReLU(o! [t] + ¢! [t]). (16)
¢) Temporal Information Learning: Based on the mes-
sage passing modules introduced above, we obtain the learned
graph embedding of each node in the t-th heterogeneous
context graph. In the dynamic heterogeneous context graph,
the same node may appear in multiple heterogeneous context
graphs with different neighboring nodes. For example, an
entity name (i.e., a word node) may be mentioned in news
on several historical days. Such information may be critical
in context and helpful for accurate event prediction. Thus, we
propose to involve a historical node embedding when updating
the embedding of nodes for the current time. Formally, we
introduce a node-type specific parameter that weights the node
embedding at time ¢ and its past state h![< ¢]. We define the
past state of a node v as the embedding of the node obtained
before the current timestamp ¢. For instance, if node v appears
in the ¢ — 3-th and ¢-th graph, the past state for time ¢ is

the node embedding learned form the ¢ — 3-th graph, i.e.,
h![< #] = h![t — 3]. For nodes without past states, a zero
vector is defined, i.e., h! [< ¢] = 0. The formal calculation
can be written as follows:

~hi)[t] = Qr(y) * h’lL)[t] + (1 - aT(U)) ’ hfj[< t] (17)
where hl[t] is the node feature obtained from the message
passing modules (Eq. 16). a.-(,,) € R is the learnable parameter
for node type 7(v).

3) Overall Aggregation and Event Prediction: We include
an averaging pooling layer on the latest node embeddings for
all types of nodes. For this purpose, we obtain the global
embedding of each type of node. We further concatenate these
global embeddings and feed them into a linear output layer for
event prediction. The computation can be written as:

grits = J(( | Mean (hﬁ)[t}))wo + bo>, (18)
ac A VEV,T(v)=a
where a € A denotes a node type, wo € R&*MIXd by e R
are parameters of the output layer, and o is the sigmoid func-
tion. We minimize the binary cross entropy loss to optimize
the model parameters.

V. EXPERIMENTAL EVALUATION

To evaluate our model for societal event forecasting, we
aim to answer the following research questions: RQ1: How
well does our causality enhanced model predict future events
compared to other approaches? RQ2: How do causal topics
affect the performance of event prediction in our proposed
model? RQ3: How sensitive is our model to hyperparameters?

We adopt the F1 score (F1) and the balanced accuracy
(BACC) to evaluate the prediction performance.

A. Datasets

The experiments are conducted on four event datasets
collected from Integrated Conflict Early Warning System
(ICEWS) [26]. These events are encoded into 20 main cat-
egories (e.g., protest, demand, appeal) using Conflict and
Mediation Event Observations (CAMEOQO) event codes. Each
event has attributes such as geolocation, date, category, etc. In
this work, we focus on predicting one category of events with
significant social impact: Protest. The event prediction task
essentially becomes a binary classification problem. We built
event datasets for four countries, including Thailand (THA),
Afghanistan (AFG), Egypt (EGY), and Russia (RUS), covering
the period from 2014 to 2017. For each country, we collect his-
torical news articles and protest events for different timestamps
and city pairs to create training and testing samples. We ignore
samples with limited context information (e.g., fewer than 7
news articles reported for a city in the historical window) and
samples with limited temporal information (e.g., less than 3
days of news articles reported). Table I lists the main statistics
for the four datasets. Note that we choose the number of topics
based on the coherence of each topic.

B. Comparison Methods

We compare our approach with several state-of-the-art
baselines that learn homogeneous, heterogeneous, static and
dynamic graphs.



TABLE I: Dataset statistics. %Positive indicates the rate of
positive samples when the prediction window is 5. #News
indicates the average number of historical news articles for
each sample, along with the standard deviation.

Dataset  #Samples  %Positive  #Cities #News #Topics (J)
THA 1,151 44.22% 23 40435 50
AFG 1,318 38.01% 18 48+33 60
EGY 1,371 59.96% 24 61443 60
RUS 2,323 40.81% 26 134+127 60

o GAT [19], which applies multi-head attention on neighbors’
embeddings. We build a static homogeneous graph contain-
ing only word nodes and use it as input.

o EvolveGCN [27], which adapts the GCN [28] model along
the temporal dimension. It captures the dynamism of the
graph sequence through using an RNN to evolve the GCN
parameters. The input is a sequence of dynamic homoge-
neous graphs containing only word nodes.

« RGCN [16], which learns a unique weight matrix for each
edge type. We use static heterogeneous graphs as input.

o HGT [20], which includes node- and edge-type dependent
parameters to characterize the heterogeneous attention over
each edge. It introduces the relative temporal encoding
technique to handle dynamic heterogeneous graphs in which
the timestamp of nodes can be different. It takes dynamic
heterogeneous context graphs as input. Considering the ever-
changing edges in our data, we adapt this model by applying
temporal encoding to edges.

To analyze the effectiveness of our model components, we
test two variant models: HGC_ i, removes the prior-based
association in correlation-based message passing. HGC_ ,ysal
eliminates the causality-aware message passing module.

C. Implementation Details

1) Graph Data Construction: To construct a sample, i.e.,
a dynamic heterogeneous context graph, we set the historical
window size to 7, and the prediction window size to 5. We use
the Latent Dirichlet Allocation (LDA) [21] model to train a
topic model for each country. We pre-train a 300-dimensional
word2vec embedding [29] for each word using all text data in
each country. Pre-processing of the text data is performed, in-
cluding cleaning, tokenizing words, and removing stop words.

For each heterogeneous context graph, the word-word edge
weight is the positive PMI score, the word-document edge
weight is the TF-IDF value, the topic-topic edge weight is
the cosine similarity, and the topic-document edge weight is
determined by the probability of the document being related
to the topic. For word-topic edges, we also use the probability
that the word is related to the topic, but we only consider the
top 30 words related to the topic. For topic-topic and topic-
document edges, edges below a threshold of 0.2 and 0.01 have
a weight of 0, respectively.

We randomly split the data samples into training, validation,
and test sets at a ratio of 60%-20%-20% for each dataset. This
partition is used for most experiments unless otherwise stated.

2) Training Details: We search for the size of the hidden
states from {32,48,64,80} in neural networks of all methods.
Note that we keep the same hidden state dimension for
different hidden layers. The number of graph learning layers
is 2 for GAT and RGCN models, and 1 for EvolveGCN, HGT
and our model. For multi-head attention-based approaches, we
set the number of heads to 4. All parameters are initialized
with Glorot initialization [30] and trained using the Adam
[31] optimizer with learning rate le-3, weight decay 5e-4, and
dropout rate 0.5. We set the batch size to 32 in all settings.
For all methods, the best-trained model is selected by early
stopping when the validation loss does not decrease for 20 con-
secutive epochs. All experimental results are the average of 5
randomized trials. All code is implemented using Python 3.7.9
and Pytorch 1.7.0 with CUDA 9.2. All graph neural networks
are implemented using the Deep Graph Library 0.5.2 [32].
The implementation code for the HGT model is adapted from
https://github.com/acbul/HGT-DGL. Code of the proposed
model is available at https://github.com/yuening-lab/HGC.

VI. EXPERIMENTAL RESULTS

A. Event Prediction Performance (RQI)

We report the event prediction results in terms of F1 and
BACC for the proposed model and the baselines on the four
datasets, as shown in Table II. We conduct experiments on
two data settings that vary the ratio of the training and test
sets while fixing the size of the validation set to 20% of
the total data. We aim to examine the predictive power of
different models when using limited training data. The results
show that for both metrics, the proposed model outperforms
all baselines in both data settings for all datasets. The pro-
posed model achieved relative performance improvements of
1.8%-8.6% and 1.8%-5.6% over the baselines for F1 and
BACC, respectively. For homogeneous graph-based models,
the dynamic model EvolveGCN outperforms GAT in most
cases. When the training ratio is 40%, GAT achieves better
results in both F1 and BACC on THA and AFG datasets.
As can be seen from Table I, THA and AFG contain fewer
samples and less news than other datasets. It suggests that
when homogeneous graphs are relatively sparse or training
samples are limited, dynamic homogeneous models might be
less helpful in capturing important information for predicting
events. For heterogeneous graph based models, the HGT
model achieves better performance than the RGCN model
and beats all other homogeneous graph based methods. It
demonstrates the effectiveness of self-attention in learning
hidden features in heterogeneous graphs.

We conduct an ablation study to analyze the effect of
two parts of our framework, i.e., the causality-aware message
passing module and the prior-based association term in the
correlation-based message passing module. We notice that
the results for both variants of our base model show some
performance degradation, most notably in the THA dataset.



TABLE II: Event prediction performance comparison of different approaches.

Training ratio ~ Metric GAT EvolveGCN RGCN HGT HGC_ ousa HGC _ior HGC
60% Fl1 0.713+£0.038  0.717+0.019  0.75440.014  0.803+0.03 0.816+ 0.011  0.824+0.023  0.839+0.023
¢ BACC 0.76740.029  0.765+0.015  0.795+£0.012  0.8384+0.024  0.8494+ 0.009  0.854+0.019  0.867+0.019
THA 40% Fl1 0.662+0.028  0.6284+0.060  0.7194+0.013  0.765+£0.025  0.770+0.022  0.792+0.015  0.796+0.019
‘ BACC 0.7114£0.019  0.698+0.033  0.759+0.007  0.80040.021 0.806+0.017  0.823+0.012  0.82640.015
60% F1 0.512+0.056  0.576+0.043  0.5994+0.008  0.65040.029 0.678+0.04 0.689+0.028  0.700+0.013
¢ BACC  0.6414+0.015 0.673£0.025 0.684+0.011  0.721£0.021 0.745+0.027  0.7514+0.021  0.75840.010
AFG 40% F1 0.544+0.071  0.541+0.029 0.6104+0.023  0.629+0.028  0.670+0.025  0.663£0.016  0.683+0.011
‘ BACC  0.6574+0.036  0.635+0.012  0.686+0.023  0.711+0.019  0.741£0.019  0.735+0.012  0.75140.009
60% Fl1 0.851£0.009  0.871+0.012  0.8774+0.007  0.882+0.007  0.895+0.004  0.899+0.006  0.899-+0.006
‘ BACC 0.773£0.016 ~ 0.816£0.015  0.842+0.010  0.837+0.012  0.855+£0.003  0.858+0.017  0.859+0.006
EGY 40% F1 0.838+0.020  0.841+0.006  0.866+0.007  0.866+0.010  0.877+0.009  0.878+0.009  0.882-0.002
¢ BACC 0.7664+0.029  0.783£0.015  0.839+0.008 0.831+0.006  0.847+0.012  0.851+0.011  0.850+0.009
60% F1 0.771£0.018  0.809+0.019  0.8234+0.007  0.842+0.015  0.854%0.008  0.851+0.005  0.860+0.006
¢ BACC  0.798+0.022  0.838+0.016  0.850+0.006  0.867+0.014  0.877£0.007  0.875+0.005  0.883+0.006
RUS 40% Fl1 0.743+£0.020  0.782+0.006  0.784+0.012  0.808+£0.010  0.823+0.010  0.816%0.003  0.827+0.007
¢ BACC 0.78040.011  0.814+0.006 0.817+0.009  0.838+0.009  0.851+0.009  0.846+0.003  0.855+0.006
B. Causal Topic Analysis (RQ2) g
In this work, we first discover causal topics based on causal - = s .
inference methods and then use them for heterogeneous graph c r 8
learning. To examine the effect of causal topics in the proposed 0
model, we conduct two experiments varying the causal topics ° 3
involved in the proposed model. g
a) Multi-view and Single-view Causal Topics: We pro- NAL3 T AL A3 T e AL
pose to utilize multi-view causal topics in our model. Here, we (a) THA (b) AFG
examine the effect of single-view causal topics in the model 3
training. We define single-view causal topics as causal topics ° - e g
discovered in one setting, e.g., when the size of prediction g s
window m is 3. The prediction results on the four datasets in L £
terms of F1 score are shown in Fig. 3. The bars of “N/A” show g s
the results of our model variant, which removes the causality-
aware message passing module. “ALL” means our model with 3 S
.. N « . NA 3 7 14 AL NA 3 7 14 AL
multi-view causal topics (the base model). “3,7,14” represent
our model with single-view causal topics when the size of (c) EGY (d) RUS

prediction window m is 3, 7, or 14, respectively. We observe
that the results are sometimes better than “ALL” when m is 7
or 14. This can be explained by the fact that short-term causal
topics may have less impact when we predict more distant
future events (e.g., predicting events within the next 5 days).
In this case, noisy information may be included in “ALL”.
We also notice that “7” or “14” achieves the best F1 score
in the different datasets. It may be due to the different causal
effects of causal topics. For example, the ATEs of positive
causal topics obtained when m = 7 might be larger than
those obtained when m = 14. Thus, causal topics with m =7
show greater help for prediction. We will explore the impact
of causal topics on event prediction more in future work.

b) Qualities of Causal Topics: One limitation of our
model is its dependence on the causal topics discovered in
advance. It is difficult even for human experts to pinpoint the
causal topics, i.e., the ground truth. To test how our model
is affected by the quality of the causal topics, we varied the
significance level in the causal analysis to generate different

Fig. 3: Sensitivity analysis on multi-view and single-view
causal topics. X-axis indicates causal topics used in our model.

numbers of causal topics. In Table III, we report the prediction
results for the THA and AFG datasets, accounting for the
apparent change in the number of causal topics when varying
the significance level. We fix the hyperparameters of the model
when we run different experiments. The results show that, in
general, the model produces better prediction results when the
significance level was relatively high, such as 99% or 95%,
compared to 80%. It implies that involving more causal topics
in which we have less confidence will deteriorate performance.
In the THA dataset, the best results are obtained using causal
topics with an importance level of 95%, probably because
causal topics that are not within the 99% importance level are
also important for model training. Thus, there is a trade-off
between involving fewer causal topics with high confidence
or involving more causal topics that may sacrifice confidence.



TABLE III: Event prediction results when selecting causal
topics with different confidence levels. #Pos/#Neg indicates
that the average number of topics per sample that has a

positive/negative causal effect on future protests.
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Fig. 4: Sensitivity analysis on prediction window size.

C. Sensitivity Analysis (RQ3)

We evaluate the sensitivity of our model in the following
two experiments.

a) Prediction Window Size: We investigate the perfor-
mance of our model for different prediction window sizes
from 2 to 7. The F1 score results on the four datasets are
reported in Fig. 4. We report the results of our model and the
best baseline model: HGT. From the results, we observe that
our proposed model consistently outperforms the HGT model.
When the prediction window is 2, our model without a causal
component beats the others on the THA dataset. However, it
is worth mentioning that for all other settings, our base model
achieves the best prediction results. The results demonstrate
the strength of our model in predicting future events for both
short and long time windows.

b) Model Hyperparameters: We study the effect of two
hyperparameters, including the dimension of the hidden states
and the number of graph layers. We show the results of our
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Fig. 6: Examples of causal topics discovered for each dataset
displayed using Word Cloud [33].

model on the four datasets in Fig. 5. We can observe that
increasing the hidden states dimension and the number of
graph layers simultaneously will degrade the performance to a
great extent. It is because the large size of the model makes it
easier to over-fitting when the sample size is relatively small
(around 1000 to 3000 samples for all datasets). Setting the
number of layers to 1 and tuning the dimensionality of the
hidden states, the model produces good prediction results.



D. Case Study and Discussion

We summarize the causal topics discovered from the causal
inference method (Sec. IV-A2). We show four topics that have
positive causal effects for four datasets in Fig. 6. We observe
that given the different social contexts, the causal topics
differ for each country. The identified causal information is
not determinative for the occurrence of future events, given
complex and changing social environments. Nevertheless, this
work takes the first step to explore the possibility of in-
corporating causal information into societal event prediction
models. Through our work, we hope to expand the discussion
of potential research directions for societal event prediction
and combine quantitative and qualitative analysis to better
understand societal events.

There are some limitations of this work. The first one is that
our model relies on pre-detected topics that may have a causal
impact on future events. The discovery process uses causal
inference algorithms and observational data, i.e., news and
events. When observational data are limited, we may not be
able to obtain causal topics and may need to perform manual
analysis. Secondly, the proposed model is limited in terms of
its generalizability. In this study, we use country-specific data
to detect causal topics and train a model for each country.
It restricts its ability to handle more complex situations, e.g.,
cross-country prediction.

VII. CONCLUSION AND FUTURE WORK

Predicting societal events is beneficial for decision-making
and resource allocation, and modeling the causality of events
can help people understand more about the underlying mecha-
nisms. In this paper, we propose a new approach that discovers
possible causal topics for future events and incorporates this
causal information into a heterogeneous graph learning frame-
work by considering these topics as key nodes in the graph. We
demonstrate the effectiveness of the proposed model on real-
world event datasets. We analyze the impact of causal topics
in our model from two aspects: (1) multi-view and single-view
topics, and (2) causal topics with higher or lower confidence.
We also provide case studies that summarize possible causal
topics in different national contexts and discuss the goals of
this work for expanding the potential study of societal events.
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