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AbstractÐUsing observational event data to forecast societal
events has been extensively studied in data-driven models. Prior
work focuses on correlational analysis and ignores the importance
of causal relationships behind events. Understanding the causality
of events helps one infer future events by pinpointing potential
triggers. In light of complex and dynamic social environments,
it is difficult to comprehensively analyze the causes of societal
events. In this work, we study the causal relationship between
topics and events where topics are extracted from event-related
documents. These topics represent probability distributions of
words. We introduce a method to discover topics that have
a causal effect on future events of interest. Next, we propose
a causality-enhanced dynamic heterogeneous graph learning
framework where topics, documents, and words are represented
as nodes with changing edges. To handle the temporal depen-
dencies of dynamic graphs, we introduce a temporal information
learning module that updates node representations based on their
evolving context and heterogeneous semantics. We conduct ex-
tensive experiments on four real-world datasets and demonstrate
the effectiveness of our method in societal event prediction.

Index TermsÐEvent Forecasting, Causality, Heterogeneous
Graph Learning

I. INTRODUCTION

Societal events such as protests largely affect our daily lives.

Understanding hidden social patterns and anticipating such

events is important to many stakeholders, including investors,

suppliers, and governments. Many efforts have emerged to

achieve high accurate societal event prediction. However, pre-

vious approaches mainly focused on correlation-based studies,

i.e., measuring associations between feature and target vari-

ables. Bringing causality into predictive research is promising

because knowing underlying causes of events helps humans

reason about future events. Involving causal information in

predictive methods may also help improve forecast accuracy.

There are several attempts to incorporate causal information

into predictive models for improving prediction accuracy.

Some studies introduced causal objectives such as maximizing

causal effects [1] in learning objectives to improve the predic-

tive ability of recommender systems. Other work introduced

pre-learned causal effects as prior knowledge to guide the

model training, in disease diagnosis prediction [2], and com-

puter vision tasks [3]. This suggests the potential benefits of

leveraging causal information to enhance event prediction. Yet,

few studies have investigated causal information in societal

event forecasting, and the task presents many challenges:

• The causal factors that lead to societal event occurrence are

very complex. In a dynamic social environment, events are

generally triggered by a combination of factors, and different

events are causally affected by various factors.

• Exploiting causal information about events has the potential

to help predict future events, as past causal factors are very

likely to trigger future events. However, how to effectively

harness causal information in data-driven models is a diffi-

cult and under-explored task.

• Modeling temporal information has shown advantages in

accurately predicting societal events in dynamic social envi-

ronments [4], [5]. Thus, it is important to develop models

that learn temporal dependencies and capture evolving con-

text information.

To address the above challenges, we propose a causality-

enhanced dynamic heterogeneous graph learning model for

predicting societal events. Recently, graph representation

learning has been successful in various fields. In societal event

forecasting, researchers have proposed to model graph-based

data, such as word graphs [5] and knowledge graphs [6], [7].

Inspired by such achievements, we propose to incorporate

node causality in graph learning, i.e., to highlight nodes that

are potential causal factors for the occurrence of future events

of interest. During the graph learning, causal message passing

enables nodes to learn richer contextual features than tradi-

tional correlation-based models. To better distinguish between

causal nodes and others, we study heterogeneous graphs that

include different types of nodes where some nodes preserve

causal information and some do not. Compared with homoge-

neous graphs, heterogeneous graphs present richer relational

characteristics. We develop a dynamic heterogeneous graph-

based model to learn evolving information over historical

timestamps. We also exploit causal information in graph learn-

ing (i.e., causal nodes) to enhance representational learning.

Our contributions are summarized as follows:

• We propose to study causal factors of societal events in the

form of topics. We consider a topic as a learned probability

distribution of words, which contains richer semantic infor-

mation than a single word or a single event. We introduce



a causal inference pipeline for discovering causal topics of

future events of interest based on observational event data.

• We design a dynamic heterogeneous graph learning frame-

work where historical topics, documents, and words are

represented as nodes with evolving edges. It differs from

existing heterogeneous graph methods that learn node em-

beddings in static graphs or dynamic graphs with only

evolving nodes.

• We introduce a causality-aware message passing module

and a correlation-based message passing module in the

proposed framework to incorporate discovered causal topics

and heterogeneous semantic information.

We evaluate our method on real-world event datasets com-

pared with several state-of-the-art models. We demonstrate the

strengths of our approach in event prediction and also discuss

the potential impacts and limitations of this work.

II. RELATED WORK

A. Event Forecasting

Event forecasting focuses on predicting future events based

on past social indicators, such as published news articles

or social media data. Event forecasting has been studied in

different fields such as stock markets [8], epidemics [9], crime

analysis [10], and civil unrest movements [4]. The methods

studied include traditional statistical models such as Hidden

Markov Models [11], [12], machine learning approaches such

as logistic regression [4], [13], and deep learning models [5]±

[7], [14], [15]. Deep learning methods have achieved great suc-

cess in predicting societal events. An attention-based spatio-

temporal learning framework was proposed to model dynamic

patterns of citywide abnormal events [15]. Research on graph

neural networks for event prediction has also made remarkable

progress. A dynamic graph based approach was introduced to

forecast events and identify event-related context graphs [5].

Some researchers investigated relational graph data as a rich

source of context in event prediction [6], [7]. However, few

studies have explored causality in event prediction. In this

paper, we attempt to include causality in graph learning

which involves discovering causal information and developing

a predictive model based on causal information.

B. Heterogeneous Graph Learning

Heterogeneous graphs, which contain multiple types of

nodes or multiple types of edges, have become ubiquitous

in real-world scenarios, such as recommender systems and

bibliographic networks. Graph neural networks (GNNs) have

shown great success in processing graph-structured data for

prediction tasks. GNNs learn embeddings/hidden features for

each graph node by using topological information and passing

messages from neighboring nodes to the target node. Some

studies have attempted to extend GNNs to model hetero-

geneous graphs. The relational graph convolutional network

(RGCN) was introduced to model knowledge graphs by learn-

ing different weight matrices for each edge type [16]. A

composition-based multi-relational graph convolutional net-

work (CompGCN) [17] was proposed to embed both nodes

and relations/edges in a relational graph. Some researchers

proposed a heterogeneous graph neural network, which uses

random walk strategies to sample heterogeneous neighbors

of each node and use node type-specific recurrent networks

to integrate multimodal features [18]. The graph attention

network (GAT) was extended to learn different weights for

different edge types [19]. More recently, a transformer-like

heterogeneous graph model, heterogeneous graph transformer

(HGT), was proposed [20]. It learns node- and edge-type de-

pendent parameters to characterize the heterogeneous attention

over each edge. Such models focus on static heterogeneous

graphs or dynamic heterogeneous graphs with evolving nodes.

In this work, we introduce a novel heterogeneous graph

learning framework that handles dynamic graphs with evolving

edges. In addition, the proposed framework is able to leverage

equipped causal information for graph level predictions.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first formally define some important con-

cepts. Then we present preliminary knowledge about causal

inference and formulate our problem.

Definition 1. Heterogeneous Graph. A heterogeneous graph

is defined as a directed graph G ⊆ (V, E ,A,R) with multiple

types of nodes and edges. Particularly, each node v ∈ V is

associated with a node type τ(v): V → A and each edge e ∈ E
is associated with an edge type ϕ(e): E → R. For example,

we have three different types of nodes: word, document, or

topic. We denote an edge as e = (u, v), indicating that edge

e connects node u and node v.

Definition 2. Dynamic Heterogeneous Context Graph. A

heterogeneous context graph is a type of heterogeneous graph

where edges have timestamps. A timestamped edge (e, t) =
((u, v), t) denotes the connection of two nodes u and v at time

t. A heterogeneous context graph consists of all timestamped

edges with the same timestamp. We use G[t] ⊆ (V, E ,A,R, T )
to denote the heterogeneous context graph at t ∈ T . A dynamic

heterogeneous context graph is built upon a sequence of het-

erogeneous context graphs in ascending time order represent-

ing dynamic contexts over time, e.g., {G[1], ..., G[T ]}. Note

that a dynamic heterogeneous context graph can have static

edges (and nodes), and such edges appear at all timestamps.

Definition 3. Event Forecasting. Given historical data X as

input features (e.g., news articles), learn a classifier f(X ) →
Y that maps the input to a binary target variable Y ∈ {0, 1}.

The target variable indicates whether a type of event (e.g.,

protest) will occur at a target location at a future time.

We construct a dynamic heterogeneous context graph from

historical news articles as input features to address the above

event forecasting problem. Given a city and a historical

window, we collect news articles reported during the historical

window time in this city to construct a graph. An example

of this graph is shown in Fig. 2a. We define three types

of nodes: word, topic, and document. The word nodes are

keywords extracted from the documents, and the topics are



obtained from a pre-trained topic model [21]. Different edge

types are defined for different node type pairs. We construct

timestamped edges based on the news articles reported in

the given timestamp. In detail, the edge weight between two

word nodes is determined by their positive pointwise mutual

information (PMI) scores [5], [22], and the edge weight

between a document node and a word node is defined by

TF-IDF [22]. The edge weight between a topic and a word

node denotes the probability of the word relating to that topic.

A similar edge weight relation applies to topic and document

nodes. The edge weight between two topic nodes denotes the

cosine similarity of these two topics, which are static and do

not change over time. Given the different semantic contexts of

each timestamp, the edges connecting words to words and/or

topics show recurring patterns. For example, a student rally

for educational reform occurs on day t and happens again on

day t + 5. Note that we assume each news article is unique

(i.e., the same article does not appear for multiple days), so the

edges between words and documents and the edges between

topics and documents are unique over time.

Next, we present some preliminaries on causal inference and

formulate our problem based on the aforementioned concepts.

Definition 4. Treatment Effect. Treatment effect refers to

the causal effect of a given treatment or intervention (e.g.,

the administering of a drug) on an outcome variable of

interest (e.g., the health of the patient). In the Rubin causal

model [23], the treatment effect measures the difference in

outcomes between a unit assigned to the treatment group and

a unit assigned to the control group. The average treatment

effect (ATE) measures the difference in the mean (average)

outcome between the treatment and control groups.

Definition 5. Propensity Score Matching (PSM). PSM is

a statistical matching technique that estimates the ATE of

a treatment by accounting for the covariates/confounding

variables (i.e., variables other than treatment that may affect

outcome) that predict receiving the treatment [24]. PSM

attempts to reduce the bias due to confounding variables that

could be found in an estimate of the treatment effect.

Problem Statement Based on the aforementioned defini-

tions, we aim to build an event predictor F : X → Y
that takes a dynamic heterogeneous context graph {G[t −
k + 1], ..., G[t]} ∈ X as input and estimates the occurrence

probabilities of a type of events (e.g., protest) in the future

Y t+1:t+1+∆ ∈ {0, 1} ∈ Y for a given location. A causal

node set π (i.e., causal topics) that has causal effects on the

occurrence of future events is discovered and identified in

the input graph. k ≥ 1 is the size of the historical window,

indicating that the dynamic heterogeneous context graph is

built based on data during a k-size time frame. The prediction

window (t + 1 : t + 1 + ∆) where ∆ ≥ 1 indicates the time

window that model forecasts the occurrence of events.

IV. METHODOLOGY

In this section, we present the technical details of our

proposed method. There are two major components in this

method: causal analysis of topics and the incorporation of

causal information into a dynamic heterogeneous graph model

for event prediction. Next, we elaborate on these two parts.

A. Causal Analysis

In this paper, we examine topics that have the potential

to trigger or hinder some future events (e.g., protests) in

a given location. We refer to these topics as causal topics.

Answering this question can help people understand cause-

and-effect relationships behind societal events. Ideal causal

identification is difficult to achieve because counterfactual

outcomes are not observable in the real world. In this study,

we employ techniques from causal inference literature that can

bring us closer to interpretable event analysis.

1) Discovering Causal Topics: We begin with a corpus

of news articles, including texts and timestamps reported in

different cities. We first obtain a collection of timestamps for

each city with sufficient news coverage during these times.

We create time windows for each timestamp and each city,

considering w days (historical window) before each timestamp

and m days after each timestamp (prediction window).

Treatment assignment. We then group these windows into

treatment and control groups based on whether the news

article collection at the given timestamp and city includes

a target topic j or not, denoted as Zj ∈ {0, 1}. The target

topic is defined based on a pre-trained topic model given the

corpus. We denote the total number of topics as J . We define

covariates/confounders X as the frequency of unigrams in the

historical window. The outcome as a binary value Y ∈ {0, 1}
indicates whether an event of interest (e.g., protest) occurs in

the prediction window or not.

Propensity Score Matching. We use Propensity Score Match-

ing to obtain treated-controlled instance pairs. A propensity

score is the probability of an instance being assigned to a

particular treatment given observed covariates, i.e., P (Zj =
1|X). In the implementation, we learn a propensity score

estimator using logistic regression. We match each treated

instance with a controlled instance of similar propensity score

values. The matching operation is non-replacement, i.e., no

controlled instance is used more than once. The matching

procedure produces a treatment group and a control group of

the same size. We estimate the ATE based on the outcomes of

each matched instance pair. Formally, the ATE can be written

as E[YZj=1 − YZj=0], where YZj=1, YZj=0 are the outcomes

of a pair of treated and controlled instances, respectively.

Statistical test. Given the ATEs for all topics, we select the

causes by measuring their significance using two-tailed z-score

tests with a significance level of 99%. If the z-score of a topic

falls into the right tail (> 0), we consider it has a positive

causal effect. If it is in the left tail (< 0), we consider it has a

negative causal effect. We illustrate the causal topic discovery

procedure in Fig. 1.

2) Discovering Evolving and Multi-view Causal Topics:

Motivated by ever-changing social environments, we propose

to explore evolving causal topics that can reflect time-sensitive

causes. Following the procedures introduced in the previous







matrix Γi
ς(u) ∈ R

d
h
× d

h for learning causal information given

the causal identifier of node u. The multi-head attention in the

causality-aware message passing is formally defined as below:

C-ATT(u, v) = Softmax
(

h

∥
i=1

headiC-ATT(u, v)
)

(10)

headiC-ATT(u, v) =
(Wi

C-Qh
l−1
v )⊤Γi

ς(u)(W
i
C-Kh

l−1
u )

√
d

(11)

where W
i
C-K,W

i
C-Q ∈ R

d
h
×d are weight matrices for the i-th

attention head. The use of the weight matrix Γi
ς(u) aims to

propagate different causal information between nodes.

With the obtained attention, we propose a time-aware mes-

sage that incorporates a time embedding into the source node

embedding. It is motivated by the fact that causal topics

might have long-term or short-term effects, and including time

information can better capture time-aware causal information

in dynamic graphs. Inspired by the positional encoding in

Transformer [25], we define a fixed time embedding TE[t] ∈
R

das follows:

TE[t](2s) = sin
(

pos(t)/100002s/d
)

(12)

TE[t](2s+1) = cos
(

pos(t)/100002s+1/d
)

(13)

where s is the dimension index and d is the embedding

size. Each dimension of the time embedding corresponds to a

sinusoid. We use pos(·) to denote the position of the timestamp

t in the historical window, e.g., pos(t) = k given all historical

timestamps (t − k + 1, ..., t). With the time embedding, we

formalize the calculation of the message as follows:

C-MSG(u, e) =
h

∥
i=1

(

(Wi
C-Vh

l−1
u + TE[t])WC-MSG

ϕ(e)

)

(14)

where W
i
V ∈ R

d
h
×d is the weight matrix for projecting the

embedding of the source node u into the i-th Value vector for

the causality-aware message passing. WC-MSG
ϕ(e) ∈ R

d
h
× d

h is the

edge type based learnable matrix. In the AGG function, we

aggregate the information from all neighbors using the mean

operator:

c
l
v[t] = Mean

∀u∈Nt(v),∀e∈Et(u,v)

(

C-ATT(u, v) · C-MSG(u, e)
)

.

(15)

For the combination module, we use a simple summation

of the two types of messages followed by a ReLU function:

h̃
l
v[t] = ReLU(ol

v[t] + c
l
v[t]). (16)

c) Temporal Information Learning: Based on the mes-

sage passing modules introduced above, we obtain the learned

graph embedding of each node in the t-th heterogeneous

context graph. In the dynamic heterogeneous context graph,

the same node may appear in multiple heterogeneous context

graphs with different neighboring nodes. For example, an

entity name (i.e., a word node) may be mentioned in news

on several historical days. Such information may be critical

in context and helpful for accurate event prediction. Thus, we

propose to involve a historical node embedding when updating

the embedding of nodes for the current time. Formally, we

introduce a node-type specific parameter that weights the node

embedding at time t and its past state h
l
v[< t]. We define the

past state of a node v as the embedding of the node obtained

before the current timestamp t. For instance, if node v appears

in the t − 3-th and t-th graph, the past state for time t is

the node embedding learned form the t − 3-th graph, i.e.,

h
l
v[< t] = h

l
v[t − 3]. For nodes without past states, a zero

vector is defined, i.e., hl
v[< t] = 0. The formal calculation

can be written as follows:

h
l
v[t] = ατ(v) · h̃l

v[t] + (1− ατ(v)) · hl
v[< t] (17)

where h̃
l
v[t] is the node feature obtained from the message

passing modules (Eq. 16). ατ(v) ∈ R is the learnable parameter

for node type τ(v).
3) Overall Aggregation and Event Prediction: We include

an averaging pooling layer on the latest node embeddings for

all types of nodes. For this purpose, we obtain the global

embedding of each type of node. We further concatenate these

global embeddings and feed them into a linear output layer for

event prediction. The computation can be written as:

ŷt:t+∆ = σ

(

(

∥
a∈A

Mean
v∈V,τ(v)=a

(

h
l
v[t]

)

)

wO + bO

)

, (18)

where a ∈ A denotes a node type, wO ∈ R
d∗|A|×d, bO ∈ R

are parameters of the output layer, and σ is the sigmoid func-

tion. We minimize the binary cross entropy loss to optimize

the model parameters.

V. EXPERIMENTAL EVALUATION

To evaluate our model for societal event forecasting, we

aim to answer the following research questions: RQ1: How

well does our causality enhanced model predict future events

compared to other approaches? RQ2: How do causal topics

affect the performance of event prediction in our proposed

model? RQ3: How sensitive is our model to hyperparameters?

We adopt the F1 score (F1) and the balanced accuracy

(BACC) to evaluate the prediction performance.

A. Datasets

The experiments are conducted on four event datasets

collected from Integrated Conflict Early Warning System

(ICEWS) [26]. These events are encoded into 20 main cat-

egories (e.g., protest, demand, appeal) using Conflict and

Mediation Event Observations (CAMEO) event codes. Each

event has attributes such as geolocation, date, category, etc. In

this work, we focus on predicting one category of events with

significant social impact: Protest. The event prediction task

essentially becomes a binary classification problem. We built

event datasets for four countries, including Thailand (THA),

Afghanistan (AFG), Egypt (EGY), and Russia (RUS), covering

the period from 2014 to 2017. For each country, we collect his-

torical news articles and protest events for different timestamps

and city pairs to create training and testing samples. We ignore

samples with limited context information (e.g., fewer than 7

news articles reported for a city in the historical window) and

samples with limited temporal information (e.g., less than 3

days of news articles reported). Table I lists the main statistics

for the four datasets. Note that we choose the number of topics

based on the coherence of each topic.

B. Comparison Methods

We compare our approach with several state-of-the-art

baselines that learn homogeneous, heterogeneous, static and

dynamic graphs.



TABLE I: Dataset statistics. %Positive indicates the rate of

positive samples when the prediction window is 5. #News

indicates the average number of historical news articles for

each sample, along with the standard deviation.

Dataset #Samples %Positive #Cities #News #Topics (J)

THA 1,151 44.22% 23 40±35 50
AFG 1,318 38.01% 18 48±33 60
EGY 1,371 59.96% 24 61±43 60
RUS 2,323 40.81% 26 134±127 60

• GAT [19], which applies multi-head attention on neighbors’

embeddings. We build a static homogeneous graph contain-

ing only word nodes and use it as input.

• EvolveGCN [27], which adapts the GCN [28] model along

the temporal dimension. It captures the dynamism of the

graph sequence through using an RNN to evolve the GCN

parameters. The input is a sequence of dynamic homoge-

neous graphs containing only word nodes.

• RGCN [16], which learns a unique weight matrix for each

edge type. We use static heterogeneous graphs as input.

• HGT [20], which includes node- and edge-type dependent

parameters to characterize the heterogeneous attention over

each edge. It introduces the relative temporal encoding

technique to handle dynamic heterogeneous graphs in which

the timestamp of nodes can be different. It takes dynamic

heterogeneous context graphs as input. Considering the ever-

changing edges in our data, we adapt this model by applying

temporal encoding to edges.

To analyze the effectiveness of our model components, we

test two variant models: HGC−prior removes the prior-based

association in correlation-based message passing. HGC−causal

eliminates the causality-aware message passing module.

C. Implementation Details

1) Graph Data Construction: To construct a sample, i.e.,

a dynamic heterogeneous context graph, we set the historical

window size to 7, and the prediction window size to 5. We use

the Latent Dirichlet Allocation (LDA) [21] model to train a

topic model for each country. We pre-train a 300-dimensional

word2vec embedding [29] for each word using all text data in

each country. Pre-processing of the text data is performed, in-

cluding cleaning, tokenizing words, and removing stop words.

For each heterogeneous context graph, the word-word edge

weight is the positive PMI score, the word-document edge

weight is the TF-IDF value, the topic-topic edge weight is

the cosine similarity, and the topic-document edge weight is

determined by the probability of the document being related

to the topic. For word-topic edges, we also use the probability

that the word is related to the topic, but we only consider the

top 30 words related to the topic. For topic-topic and topic-

document edges, edges below a threshold of 0.2 and 0.01 have

a weight of 0, respectively.

We randomly split the data samples into training, validation,

and test sets at a ratio of 60%-20%-20% for each dataset. This

partition is used for most experiments unless otherwise stated.

2) Training Details: We search for the size of the hidden

states from {32,48,64,80} in neural networks of all methods.

Note that we keep the same hidden state dimension for

different hidden layers. The number of graph learning layers

is 2 for GAT and RGCN models, and 1 for EvolveGCN, HGT

and our model. For multi-head attention-based approaches, we

set the number of heads to 4. All parameters are initialized

with Glorot initialization [30] and trained using the Adam

[31] optimizer with learning rate 1e-3, weight decay 5e-4, and

dropout rate 0.5. We set the batch size to 32 in all settings.

For all methods, the best-trained model is selected by early

stopping when the validation loss does not decrease for 20 con-

secutive epochs. All experimental results are the average of 5

randomized trials. All code is implemented using Python 3.7.9

and Pytorch 1.7.0 with CUDA 9.2. All graph neural networks

are implemented using the Deep Graph Library 0.5.2 [32].

The implementation code for the HGT model is adapted from

https://github.com/acbull/HGT-DGL. Code of the proposed

model is available at https://github.com/yuening-lab/HGC.

VI. EXPERIMENTAL RESULTS

A. Event Prediction Performance (RQ1)

We report the event prediction results in terms of F1 and

BACC for the proposed model and the baselines on the four

datasets, as shown in Table II. We conduct experiments on

two data settings that vary the ratio of the training and test

sets while fixing the size of the validation set to 20% of

the total data. We aim to examine the predictive power of

different models when using limited training data. The results

show that for both metrics, the proposed model outperforms

all baselines in both data settings for all datasets. The pro-

posed model achieved relative performance improvements of

1.8%-8.6% and 1.8%-5.6% over the baselines for F1 and

BACC, respectively. For homogeneous graph-based models,

the dynamic model EvolveGCN outperforms GAT in most

cases. When the training ratio is 40%, GAT achieves better

results in both F1 and BACC on THA and AFG datasets.

As can be seen from Table I, THA and AFG contain fewer

samples and less news than other datasets. It suggests that

when homogeneous graphs are relatively sparse or training

samples are limited, dynamic homogeneous models might be

less helpful in capturing important information for predicting

events. For heterogeneous graph based models, the HGT

model achieves better performance than the RGCN model

and beats all other homogeneous graph based methods. It

demonstrates the effectiveness of self-attention in learning

hidden features in heterogeneous graphs.

We conduct an ablation study to analyze the effect of

two parts of our framework, i.e., the causality-aware message

passing module and the prior-based association term in the

correlation-based message passing module. We notice that

the results for both variants of our base model show some

performance degradation, most notably in the THA dataset.







D. Case Study and Discussion

We summarize the causal topics discovered from the causal

inference method (Sec. IV-A2). We show four topics that have

positive causal effects for four datasets in Fig. 6. We observe

that given the different social contexts, the causal topics

differ for each country. The identified causal information is

not determinative for the occurrence of future events, given

complex and changing social environments. Nevertheless, this

work takes the first step to explore the possibility of in-

corporating causal information into societal event prediction

models. Through our work, we hope to expand the discussion

of potential research directions for societal event prediction

and combine quantitative and qualitative analysis to better

understand societal events.

There are some limitations of this work. The first one is that

our model relies on pre-detected topics that may have a causal

impact on future events. The discovery process uses causal

inference algorithms and observational data, i.e., news and

events. When observational data are limited, we may not be

able to obtain causal topics and may need to perform manual

analysis. Secondly, the proposed model is limited in terms of

its generalizability. In this study, we use country-specific data

to detect causal topics and train a model for each country.

It restricts its ability to handle more complex situations, e.g.,

cross-country prediction.

VII. CONCLUSION AND FUTURE WORK

Predicting societal events is beneficial for decision-making

and resource allocation, and modeling the causality of events

can help people understand more about the underlying mecha-

nisms. In this paper, we propose a new approach that discovers

possible causal topics for future events and incorporates this

causal information into a heterogeneous graph learning frame-

work by considering these topics as key nodes in the graph. We

demonstrate the effectiveness of the proposed model on real-

world event datasets. We analyze the impact of causal topics

in our model from two aspects: (1) multi-view and single-view

topics, and (2) causal topics with higher or lower confidence.

We also provide case studies that summarize possible causal

topics in different national contexts and discuss the goals of

this work for expanding the potential study of societal events.
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