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ABSTRACT
Peer-to-peer (P2P) lending marketplaces on the Web have been
growing over the last decade. By providing online platforms, P2P
lending enables individuals to borrow and lend money directly from
and to one another. Since the applicants on P2P lending platforms
may lack sufficient financial history for assessment, quite a few P2P
lending service providers have been utilizing the applicants’ social
relationships to improve the risk prediction accuracy of loan ap-
plications. However, utilizing the information of applicants’ social
relationships may introduce discrimination in prediction. In this
paper, we analyze and evaluate the impact of the applicants’ so-
cial relationships on the fairness of risk prediction for P2P lending.
We investigate over a million loan records collected from Pros-
per.com, one of the leading P2P lending companies in the world.
We construct the Prosper social network of loan borrowers and
lenders, and generate the social features of applicants by adapt-
ing a state-of-the-art social credit scoring scheme to the Prosper
social network. We consider two types of fairness notions in the
literature, namely individual fairness and counterfactual fairness.
Our results demonstrate that the social score harms both individual
and counterfactual fairness of classification. To address this issue,
we design two new algorithms that mitigate bias by generalizing
social features. Our experimental results show that our mitigation
algorithms can reduce bias while utilizing social scores effectively.
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1 INTRODUCTION
Credit evaluation and approval is the process a business or an in-
dividual must go through to become eligible for a loan or to pay
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for goods and services over an extended period. Creditworthiness,
an assessment of the likelihood that a borrower will default on
a loan, is one of many factors defining a lender’s credit policies.
Traditionally, a creditworthiness evaluation is based on an indi-
vidual’s financial history, primarily their payment records, current
debt profiles, and credit history. Machine learning (ML) algorithms,
such as classification models, rely on a measured creditworthiness
to predict if a loan or a credit application will get approved or not.

A widespread problem of traditional creditworthiness evalua-
tion is that first-time applicants and thinner-file borrowers such as
students, foreign nationals, and populations of under-banked indi-
viduals are highly likely to face rejections due to a lack of financial
history for assessment of their creditworthiness. In the past few
years, the credit scoring industry has witnessed a dramatic change
in utilizing users’ social data to assess consumer creditworthiness
[7, 18, 24]. For example, Lenddo has reportedly assigned credit
scores based on user information such as education, employment
history, and their social network friends [29]. Similar to Lenddo,
a growing number of innovative lenders (e.g., FriendlyScore [1]
and LendingClub [2]) are exploring the use of borrowers’ social
networking information in their credit underwriting process. These
firms claim that their social-network-based credit scoring and fi-
nancing practices can broaden opportunities for a larger portion of
the population and may benefit low-income consumers who would
otherwise find it hard to obtain credit.

Recently, the practice of online peer-to-peer (P2P) lending has
become popular. It also relies heavily on borrowers’ social infor-
mation for creditworthiness assessment. For example, Prosper.com,
the first P2P lending website in the US, encourages borrowers and
lenders to form online groups and establish friendships with other
Prosper members. It also allows group leaders and Prosper friends
to offer endorsements and highlight bids from group members. A
recent study [11] has shown that loans with friend endorsements
and friend bids tend to have less missed payments and yield signifi-
cantly higher rates of return than other loans. Another study [25]
also shows that utilizing alternative data such as borrowers’ social
relationships can significantly improve the prediction accuracy of
borrowers’ default behavior and increase platform profits.

Although using borrowers’ social relationships (either on In-
ternet or embedded in the lending platform) can improve the pre-
diction accuracy of loan approvals, it also raises a potential risk
of discrimination and exclusion triggered by social financing. An
algorithm that assumes financially responsible people socialize
with other financially responsible people may incorporate systemic
biases, and thus denies loans to individuals who are themselves
creditworthy but lack creditworthy connections. While the Equal
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Credit Opportunity Act (ECOA) by the Federal Trade Commission
(FTC) of USA has prohibited credit discrimination on the basis of
applicants’ race, color, religion, national origin, sex, marital status
and age, there have been little efforts of assessment and evaluation
of the potential discrimination by considering social relationships
as a feature for classification. Whether social relationships can
introduce discrimination to ML-based decision making is largely
neglected and remains questionable [8, 27].

In this paper, we analyze and evaluate the impact of utilizing bor-
rowers’ social relationships on classification fairness in P2P lending.
We performed a study over a million loan listings on Prosper.com
from November 2005 to September 2011. Since Prosper dataset does
not contain any demographic information of borrowers, we cannot
evaluate group fairness (i.e., whether the protected subgroups such
as racial or gender groups are fairly treated). Therefore, in this
paper, we mainly consider two types of fairness for individuals: (1)
Individual fairness [9] that requires similar objects receive similar
prediction results (according to a given similarity metric); and (2)
Counterfactual fairness [12, 22] that defines fairness based on coun-
terfactual examples (i.e., how would the prediction change if the
attribute referenced in the example were different?).

To the best of our knowledge, we are the first to investigate
if incorporating users’ social relationships into machine learning
algorithms introduces discrimination and bias to prediction. We
summarize our main contributions and findings as below. First,
we build a social network of Prosper dataset, and follow the state-
of-the-art social financing models [17, 32] to derive a social score
of borrowers based on Prosper social network. This social score
is used as the social feature in our classification models. Second,
we perform an extensive set of experiments on Prosper dataset
to evaluate if the social score brings discrimination to individual
fairness. Our results show that some similar loans (same non-social
features and very close social scores) receive different classification
results. This shows that individual fairness can be easily harmed
by incorporating the social score in classification. Third, we also
perform experiments to evaluate counterfactual fairness based on
counterfactual examples constructed from different types of social
relationships, e.g., a borrower who has many friends of low de-
fault risk versus someone who has many friends of high default
risk. We evaluation if the classifier treats these different counter-
factual examples fairly. Our study shows that the classifier does
not treat these different counterfactual examples fairly. Fourth, to
mitigate the bias introduced by the social score, we design two
new methods that generalize continuous social scores into discrete
values. Our results show that different generalization granularities
lead to different degrees of bias mitigation for both individual and
counterfactual fairness.

The rest of the paper is organized as follows. Section 2 presents
the preliminaries. Section 3 explains how to compute social scores.
Section 4 defines our fairness measurement metrics. Section 5 dis-
cusses the experimental setup. Section 6 presents the main experi-
mental results of fairness evaluation. Section 7 presents our bias
mitigation methods and their performance. Section 8 introduces
the related work. Finally, Section 9 concludes the paper.

2 PRELIMINARIES
2.1 Classification Methods for Loan Approval
The assessment of whether a loan application can be approved or
denied is accomplished by estimating the loan’s default probability
through analyzing a historical dataset and then classifying the loan
into one of two categories: (a) high risk - likely to default on the
loan (i.e., be charged off/failure to pay in full) and (b) low risk -
likely to be paid off in full.

Typically, the classification algorithm takes customers’ personal
information (age, gender, martial status, job, income, etc.), credit
information (monthly payment amount, interest rate, etc.), credit
history (payment history and delinquencies, amount of current debt,
types of credit in use, etc.), and bank account behavior (average
monthly saving amount, maximum and minimum levels of balance,
number of missed payments, etc.). We call these features non-social.
Besides these non-social features, the borrowers’ social information
can be used as social features. In this paper, we consider a social
feature that is modeled from the borrowers’ social relationships
embedded in the P2P lending platforms. How the values of these
social features are calculated will be discussed in Section 5. The so-
cial features will be employed together with non-social features by
a classification algorithm for loan approval/denial decision-making.
In this paper, we explore a few classification algorithms, includ-
ing random forest, k-nearest neighbors, logistic regression, naive
Bayes, SVM, AdaBoost, gradient boosting, and neural networks.
More details of the classification algorithms we used can be found
in Section 5.

Formally, given a labeled datasetD where each record represents
an individual loan application, each record consists of k features
X = {x1, . . . ,xk }. The class label y ∈ {0, 1} is the variable that the
model tries to predict for each loan application. A positive class
label y = 1 expresses that the loan application is of low risk, while a
negative class indicates a high risk loan application. We consider a
classifierH that produces a prediction ŷ, with the aim to minimize
some notion of error between y and ŷ. For notation simplicity, we
restrict the definitions to a single binary class, but they can be easily
generalized to multi-class classification problems. We use S and T
to denote the social and non-social features respectively.

2.2 Individual Fairness
Over the past few years, the machine learning community has pro-
posed a multitude of formal, mathematical definitions of fairness.
These fairness definitions can be categorized into two broad classes,
namely group fairness and individual fairness. Group fairness is
concerned with a small number of protected subgroups (such as
racial or gender groups) and requires that some statistic of interest
should be approximately equalized across groups. Standard choices
for these statistics include positive classification rates [5], false pos-
itive or false negative rates [16, 21] and positive predictive values
[6]. On the other hand, individual fairness [9] prevents discrimina-
tion against individuals and requires similar individuals are treated
similarly.

Given the fact that social information is typically associated
with individuals, the fairness of social-score-based classification
can be defined without reference to groups. Therefore, we adapt the
definition of individual fairness [9] to our setting. At a high level,
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individual fairness requires that similar individuals should receive
the same classification results. Next, we formally define individual
fairness. Given two records r , r ′, they are similar (denoted as r ≈ r ′)
if d(r , r ′) ≤ ϵ , where d is a distance metric, and ϵ is a user-specified
threshold.

Definition 2.1 (Individual fairness [9]). A predictor achieves indi-
vidual fairness if and only if for any two similar records r , r ′, they
must satisfy thatH(r ) ≈ H(r ′).

In this paper, sinceH is a binary classifier, we requireH(r ) =
H(r ′) instead of requiring H(r ) ≈ H(r ′). Dwork et. al [9] have
shown that the notion of individual fairness can be captured by
(D,d)-Lipschitz property, which states thatD(H(r ),H(r ′)) ≤ d(r , r ′),
where D is a distance measure for distributions. In general, indi-
vidual fairness is agnostic with respect to its notion of similarity
metric, since there is no unified way of defining similarity.

2.3 Counterfactual Fairness
Counterfactual fairness investigates how the prediction would
change if the concerned features were changed to different val-
ues. These different values are called the counterfactual examples.
In particular, let Φ(r ) denote the set of counterfactual examples
associated with an example r . Counterfactual fairness requires the
predictions of a model for all counterfactual examples are within a
specified error. Formally,

Definition 2.2 (Counterfactual fairness based on counterfactual
examples [12]). A classifierH is counterfactually fair with respect
to a counterfactual generation function Φ and some error rate θ if

|H(r ) − H(r ′)| ≤ θ , ∀r ∈ R, r ′ ∈ Φ(r ),
where θ is a user-defined threshold. SinceH is a binary classifier,

we require θ = 0.

3 COMPUTATION OF SOCIAL SCORE
Most of the existing social financing models [3, 15, 32] follow the
same strategy of computing a social score to measure a borrower’s
“position in a social structure based on esteem that is bestowed by
others” [17] using his/her social network information. In this paper,
we consider the latest social scoring scheme [32] of utilizing the
social relationship of borrowers to compute the social score. The
scoring scheme categorizes the borrowers into two types: positive
and negative. The positive borrowers have a low risk of loan default,
while negative ones have a higher default risk. The intuition behind
this social scoring scheme is that a borrower who is connected with
more positive-type friends should be more likely to be a positive
type, and thus receive a high social score. Based on this intuition,
the scoring scheme measures the social score as the probability
that a borrower is of positive type given his/her social network.
We must note that although the borrowers have been categorized
into positive or negative types based on their loans (Section 5.2),
this categorization only delivers a binary decision, and it does
not consider the social networks of borrowers. A numerical social
scoring system better quantifies the belief that a borrower belongs
to the positive or negative type by taking the social networking
information into consideration. Next, we explain how to compute
the social score in detail.

Given a social networkG , the social score si of a borrowerui ∈ G
is calculated as the probability of ui being positive type given its
connections in G:

si = P(ui = pos |Yi) =
1

1 +
(

λ
1−λ

)дi ( λp+(1−λ)
λ+(1−λ)p

)Li ( λ+(1−λ)p
λp+(1−λ)

)Hi
,

(1)
where Yi is the 1-hop neighbors of ui in G, дi ∈ {−1, 1} is the
observed signal of ui , which is calculated by the loan history (more
details in Section 5.2), Li and Hi are the number of negative-type
and positive-type borrowers in Yi, λ is the probability of wrong
observations, and p is the probability that two users of different
observed types are connected in G. We note that λ must be set as
λ < 0.5, to ensure λp+(1−λ)

λ+(1−λ)p > 1, and λ+(1−λ)p
λp+(1−λ) < 1. By such setup,

the number of negative- and positive-type friends for a borrower’s
social connections affects the assessment of that borrower’s cred-
itworthiness in different directions. In particular, the social score
decreases when Li increases (i.e.,ui hasmore negative-type friends),
and increases when Hi increases (i.e., ui has more positive-type
friends). When Li → 0, and Hi →∞, the social score s → 1.

4 FAIRNESS MEASUREMENT
In this paper, we mainly focus on individual and counterfactual fair-
ness. In this section, we explain the evaluation metrics of individual
and counterfactual fairness that we use.
Individual fairness. One challenge of evaluating individual fair-
ness is the definition of the similarity metric, as there is no unified
way of defining similarity of individuals. Therefore, in this paper,
we consider the most conservative similarity function that accepts
individuals whose social features only differ slightly as similar. For-
mally, let S and T be the social and non-social features. We use
lowercase s and t to denote the value of the variables S and T .

Definition 4.1 (Similarity Function). Given two individual records
r and r ′, we say r and r ′ are similar, denoted as r ≈ r ′, if: (1) t = t ′;
and (2) |s − s ′ | ≤ ϵ , where ϵ is a user-specified threshold.

This similarity function guarantees that any pair of similar
records must have the same non-social feature values, and thus
must always have the same prediction results if only non-social fea-
tures are used for classification. Therefore, any two similar records
that receive different prediction results after taking the social score
into consideration can be considered as discrimination incurred
by the social score. Based on this reasoning, we measure the bias
as the percentage of records receiving unfair treatment (i.e., their
similar peers receive different classification results). Formally,

Definition 4.2 (Bias). Given a set of records R and a classification
algorithmH on R, let B = {r ∈ R |∃r ′ ∈ R such that r ≈ r ′, ŷ , ŷ′}
(i.e., the set of similar records that receive different classification
results). We measure the bias b ofH as b = |B |

|R | .

Apparently, our bias measurement eliminates the impact of non-
social features on individual fairness, as those similar individuals
must have the same non-social feature values, and thus must receive
the same classification results (and must be fair).
Counterfactual fairness.We use the counterfactual token fairness
gap (CFGAP) metric [12] to evaluate counterfactual fairness with
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respect to a given counterfactual generation function. Formally, for
a single example x , the counterfactual token fairness gap is mea-
sured as the average gap in prediction over all of the counterfactual
pairs for that example r :

CFGAP(r ) = Er ′∈Φ(r ) |H(r ) − H(r ′)|, (2)

where Φ(r ) denotes the set of counterfactual examples associated
with an example r . Over an entire dataset, the gap is the average
of all examples that have valid counterfactuals. Formally, given a
testing dataset R, the counterfactual token fairness gap (CFGAP) of
R is measured as:

CFGAP(R) =
∑
r ∈R CFGAP(r )
|R |

. (3)

We will explain how to generate counterfactual examples of the
social score in Section 6.5.

5 EXPERIMENTAL SETUP
5.1 Dataset
We use the Prosper Loans Network Dataset1, which contains the
loan data collected from Prosper Inc2, America’s first peer-to-peer
online money lending network which has more than two million
members and over twenty billion US dollars in funded loans. The
Prosper dataset contains 1,048,575 loan records occurred from No-
vember 2005 to September 2011. Each record contains nine features:

• Lender ID: the ID of the member who contributed to this loan;
• Borrower ID: the ID of the member who received funds from this
loan;
• Timestamp: the timestamp of the loan;
• Amount: the amount of the loan;
• Status: the status of the loan. It has 11 discrete valuess: paid,
payoff, repurchased, late, defaulted, current, 1 month late, 2 months
late, 3 months late, charge-off, and cancelled.
• Lender rate (rate1): the interest rate that the lender will receive;
• Borrower rate (rate2): the interest rate that the borrower will pay,
usually the same as lender rate;
• Rating: the rating of the loan is assignedwith one of the following
values: AA, A, B, C, D, E, HR (in descending order). There are
1762 loan records that have missing rating values. These missing
values were denoted as NC.

The dataset contains 46538 (67.59%) lenders and 26268 (38.15%) bor-
rowers, in which 3957 (5.75%) users as both lenders and borrowers.

5.2 Classification Setup
Ground truth of loan classification. The ground truth of the
label Y (i.e., high/low-risk of loans) is generated from the Status
feature. By consulting with an expert in bank finance and the Pros-
per Q&A webpage3, we divide the given eleven distinct values of
Status feature into the following two classes:

1http://mlg.ucd.ie/datasets/prosper.html
2https://www.prosper.com/
3https://prosper.zendesk.com/hc/en-us/articles/210013083-Where-can-I-download-
Prosper-loan-data-

• high-risk (y = 0): Status = “late”, “defaulted”, “current”, “1
month late”, “2 months late”, “3 months late”, “charge-off”,
and “cancelled”4;
• low-risk (y = 1): Status = “paid”, “payoff”, and “repurchased”.

There are 405,486 (38.67%) loans labeled as high-risk, and 643,089
(61.33%) loans labeled as low-risk.
Categorization of borrowers based on loans. We categorize
the borrowers into positive/negative type as following. For each
borrower ui , we count the number of high-risk loans hi as well as
the number of low-risk loans li that ui has. If hi < li , we label ui
as positive type, otherwise, we label ui as negative type. We use
the positive/negative type as the value of дi , the observed signal
used in Formula 1 for the calculation of social scores. In particular,
дi = −1 when the user is a negative type and дi = 1 when the
user is a positive type. We must note that the types of borrowers
are different from the types of loans. Our goal is to predict the
loan types in the testing data, with the knowledge of the type of
borrowers collected from the training data.
Training and testing data. We randomly pick 80% of the dataset
(838,860 records) for training, and the remaining 20% of the dataset
(209,715 records) for testing. In these 209,715 records, 81,493 (38.85%)
records are high-risk, and 128,222 (61.15%) records are low-risk.
Classification models.We do not consider the timestamp feature
in classification. We use the features amount, rate1, rate2, rating (as
non-social features), and social score (as social feature) for classifica-
tion. How the social score is computed was explained in Section 3.
We investigated a few classification algorithms, including random
forest, k-nearest neighbors (KNN), XGBoost, logistic regression,
naive Bayes, SVC, and neural networks. We only report random
forest, KNN, and XGBoost given their better performances. We use
the implementation of these algorithms from sklearn5.

5.3 Evaluation Metrics
We measure the classification accuracy of the whole testing dataset
as well as each class (i.e., high-risk and low-risk). We use |TP|, |TN|,
|FP|, and |FN| to denote the number of true positive, true negative,
false positive, and false negative loans respectively. True positive
loans are the low-risk loans that are predicted as low-risk, true
negative loans are the high-risk loans that are predicted as high-
risk, false positive loans are the high-risk loans that are predicted
as low-risk, and false negative loans are the low-risk loans that
are predicted as high-risk. The classification accuracy Acc of the
whole testing dataset is measured as Acc = |TP|+|TN|

|TP|+|TN|+|FP|+|FN| . For
the high-risk records in the testing dataset, we measure the clas-
sification accuracy AccH as: AccH =

|TN|
|TN|+|FP| . Similarity, for the

low-risk records in the testing dataset, we measure their classi-
fication accuracy AccL as AccL =

|TP|
|TP|+|FN| . We also measure the

precision and recall. Precision is measured as Pre = |TP|
|TP|+|FP| , and

recall is measured as Rec = |TP|
|TP|+|FN| , which is the same as AccL .

4More details about delinquency status of Prosper loans can be found at:
https://prosper.zendesk.com/hc/en-us/articles/208500186-How-can-I-review-
the-status-of-a-late-loan-.
5https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
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(b) Borrower node degree distribution
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(c) Freq. distribution of social score

Figure 1: Distribution analysis of Prosper social network graph and its social scores

6 FAIRNESS EVALUATION AND
EXPLANATION

Since the Prosper dataset does not contain any demographic infor-
mation of borrowers and lenders, it does not support the evaluation
of group fairness that typically relies on the demographic features
(e.g., gender and race). Thus we only focus on the evaluation of
individual and counterfactual fairness. The goal of our case study
of Prosper dataset is to understand the followings:
• Whether using the social score in classification improves the
prediction accuracy. If it does, how important the social score is
to the prediction accuracy;
• Whether utilizing the social score leads to violation of individual
and counterfactual fairness. If it does, what is the reason of such
violation?

6.1 Social Scores of Prosper Dataset
6.1.1 Prosper Social Network Graph. Since Prosper dataset does
not contain any personal information of the borrowers and lenders,
we cannot link it with any external social media data (e.g., Facebook
and Twitter). Therefore, we follow the state-of-the-art work [32]
to construct a social network of borrowers and lenders embedded
in the Prosper platform. It has been shown that social networks
play a significant role in predicting the repayment probability of
borrowers [23]. Formally, each borrower or lender user corresponds
to a vertex in the graph. There is an un-weighted edge directed
from the vertex vA to vertex vB if user A had lent money to user B.
The graph has 68,849 vertices and 1,037,284 edges. The number of
edges is inconsistent with the number of transactions (1,048,575)
because there are some lenders who contribute to the same borrow-
ers multiple times. We analyze the degree distributions of lenders
and borrowers in the Prosper graph, i.e., the number of loans that
a lender has contributed or a borrower has received, as shown in
Figures 1a and 1b respectively. The highest out degree of lender
nodes is 1952 (Figure 1a), i.e., a lender has contributed to 1952 loans
at maximum. The highest degree of borrowers is 313 (Figure 1b),
i.e., a borrower has received funds from 313 loans at maximum. The
degree distributions of lenders follow the power law distribution.

6.1.2 Social Scores of Prosper Dataset. To compute the social scores,
we set λ = 0.4 as suggested by [32]. We calculate p as the fraction of
edges in the Prosper social network graph that connect borrowers

of different types. It turned out that p = 0.39 for the Prosper dataset.
The frequency distribution of the social scores is shown in Figure
1c. It can be observed that the distribution of social scores is much
skewed. Themaximum,minimum, and average of all social scores of
Prosper dataset are 1, 0.0016, and 0.9362 respectively. The standard
deviation is 0.1129. Most of the social scores are scattered in the
range [0.5, 1]. There are 80 borrowers out of 26,268 borrowers
who are associated with the social score 1. Furthermore, 14,022
borrowers have social scores that are greater than 0.99.

We also observe the distribution of social score s is correlated
with the number of negative-type and positive-type neighbors Li
and Hi . The association rules between s and Li /Hi are listed below:
• When Li ≥ Hi the social score s ∈ (0, 0.5).
• When 0 < Hi − Li ≤ 10, s ∈ [0.5, 0.9);
• When 10 < Hi − Li ≤ 25, s ∈ [0.9, 0.99);
• When Hi − Li > 25, s ∈ [0.99, 1];

The social scores also depend on the observed signal дi . Among the
26,268 borrowers, 10,302 are observed as negative-type, while the
remaining are observed as positive-type. We checked the Prosper
social relations of those 80 borrowers whose social score is 1. For all
of them, their number of positive-type friends largely dominates the
number of negative-type friends. For example, some of them have
239 positive-type friends and 22 negative-type friends, and some
have 141 positive-type friends and no negative-type friends. We
have to note that not all these 80 borrowers are observed as positive
type, although their social score is 1. 58 of them are observed as
positive-type, while the other 22 are observed as negative-type.
6.2 Importance of Social Feature
First, we evaluate if using the social score as a feature indeed can im-
prove the classification accuracy. We run a number of classification
algorithms (listed in Section 5) with and without the social score. All
of these algorithms witnessed at least 10% accuracy improvement
by using the social score. Among all these classification algorithms,
random forest, k-nearest neighbors, and XGBoost witnessed the
best accuracy improvement by the social feature. Therefore, in the
rest of the paper, we mainly focus on these three classification algo-
rithms. We measure the classification accuracy of the whole testing
dataset as well as the accuracy for low-risk and high-risk loans in
the testing dataset separately. Recall that in the testing data, 38.85%
records are high risk and 61.15% records are low risk. The accuracy,
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Table 1: Classification performance (recall, precision, and accuracy) with vs. without social score

Classification model without social score with social score

Precision Recall Overall
Acc

High risk
Acc

Low risk
Acc

Precision Recall Overall
Acc

High risk
Acc

Low risk
Acc

Random forest 0.77 0.84 0.75 0.6 0.84 0.92 0.95 0.92 0.87 0.95
K-nearest neighbors 0.74 0.8 0.7 0.55 0.8 0.88 0.91 0.87 0.81 0.91

XGBoost 0.74 0.84 0.72 0.53 0.84 0.93 0.95 0.92 0.88 0.95

Table 2: Feature importance before & after using social score

Feature Feature importance
without social score with social score

amount 0.2 0.04
rate1 0.33 0.19
rate2 0.4 0.23
rating 0.07 0.05

social score N/A 0.5

Table 3: Dependency between non-social features and social
score

Non-social feature
amount rate1 rate2 rating

Pearson correlation -0.09 -0.22 -0.22 -0.31
Mutual information 0.26 1.5 1.5 0.23
Causal relation 0.0015 -0.0023 -0.0019 -0.0017(non-social→ social)
Causal relation -0.0027 0.0019 0.0019 0.0019(social→ non-social)

precision, and recall of the three classification algorithms are listed
in Table 1. We observe that accuracy, precision, and recall on the
high-risk loans are improved by the social score much more than
the low-risk loans, although the accuracy, precision, and recall on
the low-risk loans still remains higher than that of the high-risk
loans.

To have a better understanding of the importance of the social
score to prediction accuracy, we measure feature importance output
by random forest before and after using the social score, and show
the results in Table 2. The observation is that the importance of the
social score dominates all the non-social features. This convinces
the use of the social score for classification. Due to the importance
of the social score, the classification results are highly sensitive to
the social score. Thus involving the social score incurs high risk of
fairness violation. This leads to the trade-off between prediction
accuracy and fairness, which we will investigate later.

6.3 Dependence between Social and Non-social
Features

In this section, we evaluate three types of dependence between non-
social features and the social score: (1) linear dependence evaluated
by Pearson correlation; (2) non-linear dependence evaluated by
mutual information; and (3) causal relation.
Pearson correlation. Table 3 shows the Pearson correlation be-
tween the social score and each non-social feature. The main ob-
servation is that the absolute value of Pearson correlation between

social and each non-social feature does not exceed 0.3. In other
words, the linear correlation between social and non-social features
is weak.
Pairwise mutual information. Table 3 shows the pairwise mu-
tual information between the non-social features and the social
score. Apparently, the mutual information between any non-social
feature and the social score is always less than or around 1. Thus,
little information (about 1 bit) can be obtained about the social
score through observing the non-social feature.
Causal relation. One way to understand how the social relation-
ships impact the fairness of classification is through causal inference
[22]. Formally, given two random variables X and X ′, X causes X’
if there exists a mechanism F that transforms the values taken by
the cause X into the values taken by the effect X ′. Mathematically
it is denoted as X ′ ← X . Intuitively, if the value of the cause X
is changed, then a change in the value of the effect X ′ would fol-
low. The change is not symmetric (i.e., the change of the value of
the effect X ′ is not followed by a change in the cause X ). We use
the causal discovery tool to measure the pairwise causal relation
between each non-social feature and the social feature in both di-
rections. 6 For any two given attributes x and x ′, the directed causal
relation between x and x ′ is measured in the domain [-1,1]. The
causal relation valued 1 means that x causes x ′, -1 means x ′ causes
x , and 0 means there is no causal relation between x and x ′. We
report the results of the causal relation in Table 3. The pairwise
causal relation between any non-social and the social feature is
always close to 0. In other words, the causal relation between the
social feature and the non-social features is weak.

To summarize, the dependence studies show that the social score
is not correlated to the non-social features. This suggests that re-
moving the social feature can eliminate the discrimination that it
brings towards the classification results. However, the social score
also is the most important feature for classification. Thus it cannot
be simply removed for the concern of classification accuracy. In
Section 7, we will discuss how to mitigate bias without removing
the social feature from the model.

6.4 Evaluation of Individual Fairness
We perform two sets of experiments to evaluate the impact of the
social feature on individual fairness.

• One classification modelWe use random forest as the classi-
fication model, and consider the similarity function (Def. 4.1)
with various similarity threshold values. We aim to study if the
social feature impacts the individual fairness for this particular
setting of similarity function.

6https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox
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• Multiple classification models.We consider three classifica-
tion models: random forest, XGBoost, and k-nearest neighbors.
Our goal is to study if adding social feature will bring bias for
all the three classification models.

We must emphasize that our similarity function (Def. 4.1) guar-
antees that similar records always receive the same classification
results before considering the social score. Thus any pair of similar
records that receive different classification results when the social
score is taken into consideration will act as the evidence of bias
incurred by the social feature.

Without social score With social score

label=low risk
label=high rish

Non−social features: amount=50, rate1=0.27,rate2=0.28, rating=HR
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Figure 2: An example of loan records that violate individual
fairness

6.4.1 One Classification Model. We use Figure 2 to illustrate 21
loans whose prediction results changed after using the social score.
We use the similarity threshold ϵ = 0.3011 for the similarity func-
tion (we will explain why we choose 0.3011 for ϵ later in this part).
These 21 loans are associated with the same non-social values
amount = 50, rate1 = 0.27 rate2 = 0.28, rating = “HR”. All of them
were classified as high risk before using the social score as shown in
the left part of Figure 2. However, after taking the social score into
consideration, 10 of them are classified as low risk, while the rest
11 loans remain as high risk as shown in the right part of Figure 2.
Since all of these loans are of the same values on non-social features,
the difference of their social scores determines if they are similar
or not. The 10 low-risk loans are associated with four different
social scores, namely 0.8966, 0.9542, 0.9676 and 0.9959; while the
social scores of the rest 11 high-risk loans are associated with five
different social scores, namely 0.6948, 0.8212, 0.8671, 0.9741 and
0.9945. We have to note that it is not necessary that high social
scores always lead to low-risk decision in the prediction results.
There are 10×11 = 110 loan pairs, each containing one low-risk and
one high-risk loan chosen from these 21 loans. We measured the
difference of social scores between any pair of these 110 pairs. The
maximum score difference is 0.3011, the same as the threshold ϵ .
Recall that these loans have the same values on the non-social fea-
tures. Thus any pair of themmust be similar. Indeed, for any ϵ value
such that ϵ > 0.3011 (i.e., the maximum score difference), all the 110
paired loans must be considered as similar. Since these similar loans
receive different classification results, they will be the evidence that
the social score introduces discrimination to individual fairness.

Next, we change the similarity thresholds. We found 20 records
associated with the same non-social values amount = 100, rate1
= 0.215, rate2 = 0.22, rating = "D". All of them were classified as
low risk before using the social feature. However, after adding the
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Figure 3: # of unfair pairs w.r.t. various similarity thresholds
social feature, 10 of them are classified as high risk, while the other
10 remain as high risk. The 10 high-risk loans are associated with
five unique social scores, namely 0.9169, 0.9294,0.9816,0.9845, and
0.9998, and the 10 low-risk loans are associated with two social
scores: 0.9987 and 0.9999. The minimum distance of the social score
of any pair of these 10 high-risk and 10 low-risk loans is 0.0001,
and the maximum distance of the social score is 0.0705. There are
10 × 10 = 100 pairs of loans, one of high-risk and the other of low-
risk. Since these loans have the same values on non-social features,
any value of the threshold such that ϵ > 0.0705 make the loans
in each of these 100 pairs similar. However, they receive different
classification results. Therefore, the classification of these loans
violates individual fairness.

6.4.2 Multiple Classification Models. We consider three classifi-
cation models, namely random forest, XGBoost, and k-nearest
neighbors. For each model, we use three different similarity thresh-
olds. We find the set of loans whose classification results become
unfair for each similarity threshold. Then we intersect the three
sets of unfair loans. Apparently, the intersection results include
those loans whose classification results are changed in all the
three classification models. It turned out there are 19519 records
changed after using social scores for all models. Among them,
56 loans associated with the same non-social values amount =
200, rate1 = 0.2, rate2 = 0.2, rating = "C". All of them are all clas-
sified as low risk before using the social feature; after adding the
social feature, 33 of them are classified as high risk by all the
three classification models, while 23 of them remain the same as
low risk, and 1 of them get different results from different mod-
els. The 33 high-risk loans are associated with 11 social scores
0.7638,0.8212,0.9571,0.9637,0.9741,0.9923,0.9981,0.9986,0.9988,0.9999
and 1, and the 23 low-risk loans are associated with 12 unique
social scores 0.8966, 0.9767, 0.9902, 0.9917, 0.9931, 0.9951, 0.9959,
0.9965,0.9975,0.9987,0.9996,and 0.9998. There are 33×23 = 759 pairs
of loans, one of high-risk and the other of low-risk. The maximum
distance of the social score of all 759 pairs is 0.236. Apparently, any
pair of these loans in 759 pairs is considered similar if the threshold
ϵ ≥ 0.236, the maximum social score difference.

6.4.3 Analysis of Similarity Threshold. In particular, for one clas-
sification model setting, we vary the similarity threshold of social
scores, and count the number of unfair pairs that receive the same
prediction results before using social scores but classified differ-
ently after using social scores. The results are shown in Figure 3.
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We show the log scale (base=e) of the count number as it is large
(6, 263, 990 for threshold=1), The results show that the prediction
are very sensitive to social scores. Even when the threshold is as
small as 1e − 6, there are still 224,497 unfair pairs.

6.5 Evaluation of Counterfactual Fairness
Generation of counterfactual examples. Since the social score
is a numerical value, we cannot use all possible values of the social
score as the counterfactual examples. Therefore, we generate the
counterfactual examples of the social network structure instead.
In particular, for a given user ui , let Hi and Li be the number of
positive-type and negative-type friends of ui in his/her original
Prosper social network. We consider the set of counterfactual ex-
amples Φ(ui ) that consists of three types of counterfactual social
networks of ui :

• Opposite social type: we switch the values ofHi andLi . Intuitively,
ifui have more positive-type (negative-type, resp.) friends in the
original social network, his/her counterfactual social network
will have more negative-type (positive-type, resp.) friends.
• Less-active social type: we set Hi = Hi/2 and Li = Li/2.
• More-active social type: we set Hi = Hi ∗ 2 and Li = Li ∗ 2.

Evaluation of counterfactual fairness.Wemeasured CFGAP of
the three counterfactual examples. The result of CFGAP is 0.07.
Apparently it violates counterfactual fairness (Definition 2.2) as
CFGAP > 0. This shows that the social score brings non-negligible
amounts of discrimination to the classification results. We also mea-
sured CFGAP for each individual counterfactual example. The CF-
GAP of opposite, less-active, and more-active counterfactual exam-
ples are 0.03, 0.07, and 0.11 respectively. This shows that changing
the social type from positive/negative-type to negative/positive-
type has the largest impact on counterfactual fairness. Furthermore,
shrinking the social network size also has moderate impact on coun-
terfactual fairness, as each friend plays a more important role when
there are fewer friends. Moreover, enlarging the social network size
has the least impact, as increasing Hi and Li results in relatively
smaller change of the social score.

7 BIAS MITIGATION METHODS
As shown by the empirical study in Section 6, using the social score
in classification can bring discrimination against both individual
and counterfactual fairness. Since the social score has weak cor-
relations with the non-social features (as shown in Section 6.3),
an easy solution of bias mitigation is to remove the social scores.
However, given the importance of the social scores to the predic-
tion accuracy, it is not an ideal solution to remove social scores
completely from the learning process. An alternative solution is to
add fairness constraints to the objective function [20, 35], but this
solution is expected to hurt the prediction accuracy significantly if
the constraint is too rigid.

In this paper, we design a new bias mitigation method that uses a
generalized social score instead of the original one in classification.
Intuitively, all the original social scores are split into ℓ continuous
ranges, where each range corresponds to a discrete value (e.g., low,
medium, and high). Next, we present the details of our generaliza-
tion schemes (Section 7.1) followed by an empirical study of our
schemes (Section 7.2).

7.1 Generalization Schemes
We design two generalization schemes to generate the generalized
social scores: (1) the equal-width generalization scheme; and (2)
the equal-size generalization scheme. Both generalization schemes
map the given k unique social scores to ℓ < k ranges, where these
ranges either are of the same width (equal-width) or contain the
same number of social scores (equal-size). We explain the key ideas
of both generalization schemes as below.
Equal-width generalization scheme.Using this scheme, all unique
social scores are assigned to ℓ continuous ranges that are of the same
width. More precisely, each range is of width r = (max −min)/ℓ,
wheremin andmax are the minimum and maximum of the k given
social scores. Each range corresponds to a discrete generalized
value. As an example, consider the social scores whose distribution
is shown in Figure 4a, Figure 4b shows one of its equal-width gen-
eralization scheme of ℓ = 10 ranges. All 10 ranges are of the same
width.
Equal-size generalization scheme. The equal-width generaliza-
tion scheme cannot deal well with input data of skewed distribution.
To deal with the social scores of skewed distribution, we design the
equal-size generalization scheme by which the social scores are split
into ℓ ranges, where each range contain similar number of social
scores (including the repeated ones). The ranges can be generated
by constructing an equal-height histogram of the social scores. Fig-
ure 4c shows one example of the equal-size generalization scheme
for the social scores in Figure 4a.

For both schemes, intuitively, fewer ranges lead to more gen-
eralized social scores. More generalized social scores lead to less
accurate but more fair prediction. Therefore, we can address the
trade-off between accuracy and fairness by controlling k , the num-
ber of generalization ranges.

7.2 Evaluation of Bias Mitigation
In this section, we present the evaluation results of the two bias
mitigation methods for both individual and counterfactual fairness.
Accuracy. We measure the classification accuracy on the gener-
alized data, and show the results in Figure 5a. Unsurprisingly the
accuracy degrades after generalization for both schemes. However,
the equal-size generalization scheme witnesses much less accuracy
loss than the equal-width scheme, as it handles better with skewed
data distribution than the equal-width scheme.
Individual fairness. We vary the number of generalized ranges
for both equal-width and equal-size generalization schemes, and
measure bias (Def. 4.2) by these two generalization schemes. We
choose up to 25 generalization ranges. The results are shown in
Figure 5b. The first observation is that more generalization ranges
always lead to less generalized values, and thus higher accuracy
as well as higher bias. This is straightforward due to the trade-
off between accuracy and fairness. Second, both equal-size and
equal-width generalizations schemes witness decrease in bias. This
demonstrates the effectiveness of these schemes for bias mitiga-
tion. Furthermore, the equal-width generalization scheme always
has smaller bias than the equal-size scheme. To explain this, we
compared the distribution of social scores before and after gen-
eralization for both schemes. It turned out that some ranges by
the equal-size generalization scheme are very small (e.g., of width
0.01). By those small ranges, some social scores that are similar
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(b) Equal-width histogram
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(c) Equal-size histogram

Figure 4: Illustration of two generalization schemes (# of generalization ranges = 10)
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Figure 5: Equal-width vs. equal-size generalization scheme

(e.g., 0.5 and 0.53) are put into different ranges, and consequently
are generalized as different discrete values. Such change leads to
different classification results and counts as bias. However, for the
equal-width scheme, due to the equal width of all ranges, the dis-
tribution of social scores is similar before and after generalization.
Thus the bias is smaller than the equal-size scheme. We must note
that due to the trade-off between accuracy and fairness, although
the equal-size scheme loses to the equal-width scheme in fairness,
it wins in accuracy as shown in Figure 5a.
Counterfactual fairness. We still use the three counterfactual
examples defined in Section 6.5. In particular, we change the social
network structure for the three types of counterfactual examples,
re-compute the social scores of these counterfactual social graphs,
and generalize the social scores after re-computation. Then we
measure CFGAP (Def. 2) based on the generalized social scores for
both generalization schemes. The results are shown in Figure 5c.
Our main observation is that the counterfactual fairness result is
similar to that of individual fairness - the equal-size scheme delivers
worse CFGAP than the equal-width scheme. Indeed, when there
are more generalization, the CFGAP of the equal-size scheme can
be larger than it is before generalization. However, the CFGAP of
the equal-width scheme is always smaller than it is before gen-
eralization. The reason behind this observation is similar to our
analysis for individual fairness - the equal-size scheme changes
the distribution of social scores much more significantly than the
equal-width scheme.

To summarize, there always exists the trade-off between accu-
racy and fairness. The equal-size generalization scheme is preferred
if accuracy is considered with higher importance than fairness. Oth-
erwise, the equal-width generalization scheme is a better candidate
than the equal-size scheme given its effectiveness in bias mitigation.

8 RELATEDWORK
Financialmachine learning using social networking data. So-
cial networking data has been used in various financial machine
learning applications, including risk assessment for identify theft
and fraud [26], financial performance analysis and prediction [30],
credit scoring [23, 34], to name a few. In this paper, we mainly
focus on the application of credit scoring by using the borrowers’
social network information in P2P lending platforms, and study the
fairness problem under this context.
Algorithmic fairness. Several competing notions of fairness have
been recently proposed in the machine learning literature. The
definition of fairness can be categorized into three types [28]: 1)
it is not based on protected attributes such as gender or race (fair
treatment), 2) it does not disproportionately benefit or hurt indi-
viduals (fair impact), and 3) given the target outcomes, it enforces
equal discrepancies between decisions and target outcomes across
groups of individuals based on their protected characteristic (fair
supervised performance). Fair treatment can be implemented via
fairness through unawareness [14] which ignores the protected
attributes. Examples of fair impact constraints include 80% rule
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[10] and demographic parity [4, 20]. Examples of fair supervised
performance constraints include equal opportunity and equal odds
[16] and de-correlation [35]. Most of these definitions focus on
fairness of groups (i.e., individuals who share the same value on
the protected attributes). Individual fairness [9, 22, 31] is defined as
a non-preferential treatment towards an individual. Counterfactual
fairness [12, 22] evaluates fairness in terms of causal inference and
counterfactual examples. In this paper, we mainly focus on both
individual and counterfactual fairness.
Bias mitigation algorithms. Broadly, the bias mitigation algo-
rithms fall into three categories: (1) pre-processing: the bias in the
training data is mitigated [4, 10, 19]; (2) in-processing: the machine
learning model is modified by adding fairness as additional con-
straint [5, 13, 35]; and (3) post-processing: the results of a previously
trained classifier are modified to achieve the desired results on
different groups [16, 33]. Most of these methods mainly consider
group fairness. Our bias mitigation methods are the first to address
individual fairness and counterfactual fairness.
9 CONCLUSION AND FUTUREWORK
In this paper, we study if involving social relationships in classi-
fication tasks introduces any discrimination in the classification
results. We construct a social network graph on the Prosper dataset,
and implement a well-used social scoring scheme [23] to derive
the social feature from the Prosper social network. We evaluate
both individual and counterfactual fairness of the loan classification
results with the social feature taken into consideration. Our exper-
imental results show that although the social score can improve
the prediction accuracy significantly, it introduces discrimination
to both individual and counterfactual fairness, due to the high sen-
sitivity of the classification results to the social score. This leads
to the trade-off between prediction accuracy and fairness. Thus
we design new bias mitigation methods to reduce the bias of pre-
diction incurred by using social features. Our experimental results
demonstrate the effectiveness of our bias mitigation approaches.

Our future work will focus on both extending the ideas in this
paper to other types of fairness notions, models and domains, and
providing theoretical performance guarantees. We will consider
group fairness. In this paper, we did not evaluate group fairness
due to the lack of demographic data of users in the Prosper dataset.
However, in general, since the social relationships are highly cor-
related with the protected attributes (e.g., race and gender), the
group fairness is expected to be affected significantly by the social
features that model the social relationships. Additional case studies
can be performed when more suitable data becomes available.
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