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ABSTRACT
Deep learning models have been studied to forecast human events
using vast volumes of data, yet they still cannot be trusted in certain
applications such as healthcare and disaster assistance due to the
lack of interpretability. Providing explanations for event predictions
not only helps practitioners understand the underlying mechanism
of prediction behavior but also enhances the robustness of event
analysis. Improving the transparency of event prediction models
is challenging given the following factors: (i) multilevel features
exist in event data which creates a challenge to cross-utilize dif-
ferent levels of data; (ii) features across different levels and time
steps are heterogeneous and dependent; and (iii) static model-level
interpretations cannot be easily adapted to event forecasting given
the dynamic and temporal characteristics of the data. Recent inter-
pretation methods have proven their capabilities in tasks that deal
with graph-structured or relational data. In this paper, we present
a Contextualized Multilevel Feature learning framework, CMF, for
interpretable temporal event prediction. It consists of a predictor
for forecasting events of interest and an explanation module for
interpreting model predictions. We design a new context-based
feature fusion method to integrate multiple levels of heterogeneous
features. We also introduce a temporal explanation module to de-
termine sequences of text and subgraphs that have crucial roles in a
prediction.We conduct extensive experiments on several real-world
datasets of political and epidemic events. We demonstrate that the
proposed method is competitive compared with the state-of-the-art
models while possessing favorable interpretation capabilities.
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• Information systems→Datamining; •Computingmethod-
ologies → Knowledge representation and reasoning; Temporal rea-
soning.
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1 INTRODUCTION
Human events such as flu outbreaks, protests, and crimes often
have significant impacts and exhibit particular patterns. Under-
standing societal events and their recurring patterns is important
for many stakeholders in resource allocation, personnel logistics
and scheduling, and government response. With the availability
of multiple media sources, data-driven machine learning methods
have been widely studied in applications such as epidemic fore-
casting [10] and civil unrest predictions [28]. Temporal event data
such as Integrated Crisis Early Warning System (ICEWS) [4] can
be organized in multiple levels. At a granular level, we collect doc-
uments such as news articles which contain semantic information
of events. Each event is extracted from an authentic news article
and organized in structured data with relational features such as
subject, action, and object as shown in Figure 1. At a high level,
aggregated information such as daily counts of different types of
events in a location can be calculated from these documents. Re-
searchers have proposed to use frequency information such as event
occurrence rate [14], or the number of tweets [46, 47], to predict
societal events. However, frequency-based features are limited in
providing easy-to-understand explanations because they are often
unitary and independent. Thus, recent research has introduced so-
phisticated features such as graphs and text summaries to provide
explainable indicators. These methods focus on identifying sup-
porting evidence corresponding to target events of interest, such as
precursor documents [25, 26] and relational graphs [8]. Recently,
a systematic framework Glean [9] has been proposed to forecast
event participants as well as future events. The evidence identified
in existing work is either unilateral or requires additional manual
screening. For example, only providing relevant news articles [25]
or actor names [9] is less informative because one news article may
involve multiple events simultaneously. Actor information might
be limited to general terms (e.g., protester, activist). Combining var-
ious features will enable us to provide comprehensive explanations
and capture hidden structures in context. However, achieving this
goal brings some challenges:
• Cross-utilizing multilevel heterogeneous data. Deep mod-
els involving heterogeneous data (i.e., data with a variety of types
and formats) have shown impressive performance in prediction
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News 1: California’s governor issued a 
unprecedented statewide “stay at home 
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Figure 1: Amotivating example of predicting and explaining
the Covid-19 trend in California. Subgraphs with dark yel-
low node and edges are identified as key events. Highlighted
text refers to identified event contexts.

tasks [9, 45]. Various formats of data are usually complementary
and can provide diversified and comprehensive interpretation.
However, modeling the dependencies in heterogeneous data is
a new challenge in interpretable event prediction given latent
correlations among features as shown in Figure 1.

• Dependencies in temporal data. Temporal information is es-
sential for predicting future events [8, 13, 25]. Providing expla-
nations for temporal data poses new challenges. Identifying a
sequence of explanatory features in chronological order requires
distinguishing important features at different time steps.

• Providing multilevel explanations. Existing interpretable ap-
proaches focus on generating or identifying static input patterns
for specific tasks (e.g., graph classification) or examples (e.g., im-
ages). To obtain explanations for dynamic and temporal data,
it is necessary to model the underlying associations between
elements at different levels and time steps.

We address the above challenges by proposing an explainable
event forecasting framework that consists of an event predictor
and an event explainer. The motivation example shown in Figure 1
illustrates the prediction and interpretation process of the proposed
framework. We utilize news articles and events as main input data
to predict future events of interest (e.g., Covid-19 trends or protests).
Events and articles are inherently related because events are ex-
tracted from the unstructured text of articles. Therefore, we model
dependencies in heterogeneous data in a multilevel manner. In this
example, the model predicted that newly reported Covid-19 posi-
tive cases would increase in California at a future time, and some
influential elements were captured, such as “passengers complain
about lines” and “travellers flooded in US airports”. All the evidence
suggested that this epidemic was getting worse. Acknowledging
the delayed effect of policies and the long incubation period of the
disease, it is understandable for the model’s prediction of increasing
cases in the near future. Such explanation provides information
from different aspects and complements each other, which satisfies

the comprehensive expectation of model explanation. Our contri-
butions are summarized as follows:

• We propose an interpretable event forecasting framework that
predicts events in the future and provides example-level expla-
nations that can streamline the process of event analysis. The
proposed framework includes (1) a predictor that models multi-
level contextualized features in a hierarchical structure and pro-
cesses temporal data through temporal feature learning, and (2)
a post-hoc interpreter to identify main features that are related
to target events at different levels.

• Wepropose amultilevel explanationmethod for event forecasting
by inspecting significant elements at two levels of data. Specifi-
cally, we model the importance of semantic information in the
form of documents and the effect of specific events identified
from documents in top-down order.

• To deal with temporal dependency in interpretation, we introduce
the concept of reference embedding that guides the generation
of explanations across different time steps. The reference em-
bedding encodes temporal attributes that are related to a model
prediction. It is designed to help the model identify important
features in temporal data.

The proposed method is evaluated on real-world political and epi-
demic event datasets compared with several state-of-the-art models.
We demonstrate the ability of the proposed method in both event
prediction and explanation with extensive experiments.

2 RELATEDWORK
2.1 Interpretable Machine Learning
Interpretable machine learning has been widely explored given
that many machine learning models are inherently a black box [11,
12, 21]. Traditional interpretable models can be divided into two
main categories: (1) in-processing interpretable methods and (2)
post-hoc interpretable methods. In-processing interpretable meth-
ods generate explanations in the process of decision making or
while being trained, e.g., Decision Trees [30] and Attention Net-
works [1, 38, 39]. Post-hoc interpretable methods aim to explain
the decision-making process of black box models after they are
trained. Gradient-based methods such as Saliency Map [34] have
been introduced to inspect feature importance via backpropagating
gradient-like signals [32, 35]. Another post-explanatory study is
to approximate the decision boundary of a model through feature
perturbations such as LIME [29] or feature masking like L2X [5].
LIME [29] generates local sparse explanations of black box models
via local surrogate interpretable models. L2X learns neural net-
works as an interpreter to generate feature masks, with the goal
of maximizing the mutual information of masked features and pre-
dictions. In addition to grid-like data, interpretable graph neural
networks have been studied to provide explanatory subgraphs for
instances [22, 43] or classes [44]. In knowledge graph research, rea-
soning methods have been proposed to use sampling and attention
mechanisms to predict future links on large-scale temporal knowl-
edge graphs [16, 42]. However, most of these methods focus on
static analysis of input features and ignore temporal dependencies
in sequential data.



2.2 Interpretable Event Forecasting
Event forecasting has been broadly studied in many real-world
applications such as election predictions [36], stock market move-
ments [2], disease outbreaks [10, 33] and criminal activities [41].
Traditional existing machine learning methods work on euclidean
or grid-like data. For example, frequency (and quantity) in social
media streams are utilized in linear regression models to predict the
occurrence time of future events [2]. More advanced features such
as topic-related keywords [41], paragraph embeddings [25, 26], and
semantic graphs [8, 9] have also been investigated in a variety of
techniques including multi-task learning [26, 47], multi-instance
learning [25], and graph representation learning [8, 9].

Identifying precursors for events is used for interpretive narra-
tive generation and storytelling algorithms [17]. A multi-instance
learning approach was proposed to jointly tackle the problems of
identifying evidence-based document precursors and forecasting
events of interest [25]. Key sentence identification was investigated
in a multi-instance convolutional neural network (CNN) for event
detection [40]. Modeling document precursors by considering the
spatiotemporal effect of event-related indicators is further proposed
in event forecasting [26]. Recently, graph-based event precursors
have been studied in event forecasting. Deng et al. [8] introduced
a dynamic graph convolutional network to encode temporal text
features into graphs for forecasting societal events and identifying
their context graphs. The evidence for event prediction generated
by current methods is of a single type and expects additional sup-
portive information. Therefore, these methods have limitations in
identifying key information in multi-level data, which can help
interpret predictions from multiple aspects.

3 PROBLEM FORMULATION
The objective of this study is to forecast the occurrence of cer-
tain categories of events (e.g., protest, flu outbreaks) and provide
example-level explanations.

First, we build an event predictor 𝐹 : X → Y that takes a
sequence of historical data 𝑋 ≤𝑡 = {𝑋 1, ...𝑋 𝑡 } ∈ X in a location
and estimates the occurrence probabilities of a set of categories of
events in the future 𝑌 𝑡+Δ ∈ {0, 1}𝑀 ∈ Y for this location. Δ ≥ 1 is
the lead time which denotes the number of time steps in advance
for a prediction. 𝑌 𝑡+Δ [𝑖] = 1 denotes the occurrence of 𝑖-th event
category. When we predict only one type of events, it becomes a
binary classification problem. 𝑋 ≤𝑡 denotes the historical data at
a location before time 𝑡 . Specifically, each input instance includes
three types of features: (1) count vector {c ∈ Z𝑁𝑒 }≤𝑡 represents the
occurrence frequency of 𝑁𝑒 types of encoded events at time step
𝑡 . Common event types in the domain of societal events include
protest, fight, appeal etc.; (2) documents {𝐷}≤𝑡 (e.g., news articles)
contains semantic information of these events, and (3) event graph
{𝐺}≤𝑡 consists of tuples of event elements (i.e., subject, event type,
object) which are extracted from documents. The input data can
be simply written as 𝑋 ≤𝑡 = {c, 𝐷,𝐺}≤𝑡 . The encoded events in the
count vector refer to the event types in a relational event graph
𝐺 . We focus on predicting main categories of events (e.g., protest)
rather than encoded event types (e.g., engage in violent protest for
policy change).

Table 1: Important notations and descriptions.

Notations Descriptions

𝑀 number of labels to predict
𝑁𝑒 number of event types in count vectors
𝑤 historical time window size for event prediction
Δ horizon/lead time of the prediction
c𝑡 count vector of all encoded events at time 𝑡
h𝑐 frequency embedding at time 𝑡

h𝐷𝑖
, h′

𝐷𝑖
document embedding (w/o and with attention)

o𝐷𝑖
context embedding that involves frequency and se-
mantic information for events extracted from 𝑖-th
article

a𝑣, a𝑟 , a𝑢 embedding of subject, event type and object
z𝑡 reference embedding at time 𝑡

m𝐷 ,m(𝑣,𝑟 ,𝑢) learned news article masks and event masks

Second, we aim to explain the predictor 𝐹 : X → Y by introduc-
ing a post-hoc event forecasting explainer𝜓 : (X, 𝐹 ) → X𝑠 ⊆ X to
generate sequences of explanatory data. The explainer takes the
input data 𝑋 ≤𝑡 as well as latent embeddings obtained from the
predictor 𝐹 as input, and outputs a subset of input data as the expla-
nation 𝑋 ≤𝑡

𝑠 . In this work, the predictor and explainer are modules
in a unified framework and are trained in order. The predictor is
trained on an event forecasting task. Then, we use the predictor in
evaluation mode, and use the input features and latent embeddings
learned from the predictor to train the parameters in the explainer.
Important mathematical notations are in described Table 1.

4 METHODOLOGY
Figure 2 provides an overview of the proposed explainable event
forecasting framework which consists of (1) an event predictor
module and (2) an event explainer module. The predictor has two
parts: (1a) multilevel feature learning that hierarchically models
heterogeneous data. It captures the dependencies between different
types of data by encouraging signals to propagate from higher-level
features to lower-level features. (1b) Temporal feature learning
that learns sequential information across different historical time
steps. The explainer is designed to provide temporal and multi-level
explanations for the predictor model in evaluation mode. There are
two main components in the explainer: (2a) semantic explanations
which identify key documents at each historical time step. (2b)
relational explanations which detect influential events (including
entities and their relations) by applying edge masks.

4.1 Event Forecasting
We assume societal human events are either affected by or conse-
quences of events in the past. In this work, instead of considering
all historical information 𝑋 ≤𝑡 , we define a historical time window
𝑤 and assume that the occurrences of events at time 𝑡 depend on
the historical events that have happened in a past window𝑋 𝑡−𝑤+1:𝑡 .
Specifically, we model the probability 𝑃

(
𝑌 𝑡+Δ

)
of event occurrences

at time 𝑡 using the sequence {c, 𝐷,𝐺}𝑡−𝑤+1:𝑡 with length𝑤 :
𝑃

(
𝑌 𝑡+Δ

��{c, 𝐷,𝐺}𝑡−𝑤+1:𝑡
)
= 𝜎

(
MLPΨ

(
h𝑡
) )

∈ R𝑀 , (1)

where h𝑡 is the final feature vector encoding historical information
from 𝑡 −𝑤 +1 to 𝑡 . Given h𝑡 , we utilize a multilayer perceptron with
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Figure 2: An overview of the proposed framework which consists of an event predictor and an event explainer. The predic-
tor fuses hierarchical and heterogeneous data, and learns sequential information across historical time steps. The explainer
provides temporal and multilevel explanations for the predictor.

one hidden layer parameterized by Ψ to obtain event probabilities
where 𝜎 is an activation function (e.g., sigmoid).

To obtain the final embedding vector h𝑡 , we design two modules:
multilevel feature learning and temporal feature learning, to fully
integrate multilevel features from heterogeneous historical data.

Multilevel Feature Learning The input data consist of three
types of features: event frequency, documents, and event graphs.
Historical event frequencies contain high-level knowledge. For ex-
ample, it shows if one type of event occurs more frequently than
others. Event related documents describe detailed information such
as background, participants, and summaries of events. Event graphs
extracted from news articles reveal key relations among event par-
ticipants. For instance, one political event can be represented as
(Farmers, protest, Governor) in a graph. Each document contains se-
mantic knowledge of events while event graphs only preserve event
participants and actions among these participants. Multiple events
can be obtained from one article. Based on the hierarchical structure
of multi-level data, we introduced a top-down information model-
ing method for event prediction and interpretation. Specifically, we
divide the multilevel feature learning process into three parts: (1)
Level 1 Frequency Embedding which models event frequency infor-
mation; (2) Level 2 Context Embedding which integrates frequency
embeddings into text information and then serves as contextual
information for specific events; (3) Level 3 Contextualized Graph
Learning which propagates context embeddings into each event in
an event graph.

Level 1 Frequency Embedding For each location at time 𝑡 , we
initially have the numerical feature c𝑡 which is the count vector
of all encoded events. The dimension of the count vector is fixed,
and each entry represents the occurrence count of a certain type
of events. Given the sparsity and the high dimensionality of this
feature, we apply a linear layer 𝑓𝑐 (·) to map the event count vector
to a low-dimensional space h𝑡𝑐 = 𝑓𝑐 (c𝑡 ). The frequency embedding
h𝑡𝑐 ∈ R𝑑𝑐 will be further integrated in the two lower level features.

Level 2 Context Embedding At this level, we first model the
semantic associations between news articles and then inject the
frequency embedding of events into each document. For a given
location and a time step 𝑡 (e.g., day), we formulate event-related
documents published at time 𝑡 as 𝐷𝑡 = {𝐷1, ..., 𝐷 |𝐷 |} and process
each article into sentences, i.e., 𝐷𝑖 = {𝑠1, ...𝑠 |𝐷𝑖 |}. To obtain numer-
ical semantic information from text, we map sentences into vector
space by employing a pretrained sentence embedding model [27].
The semantic information of the 𝑖-th article can be represented
as 𝐷𝑖 = [s1, ...s |𝐷𝑖 |]. Sentence embedding is adopted because it
encodes the meaning of a sentence, rather than discrete words.
To get global semantics of an entire article, we obtain document
embeddings by applying element-wise averaging on the sentence
embeddings h𝐷𝑖

= 1
|𝐷𝑖 |

∑ |𝐷𝑖 |
𝑘=1 s𝑘 , where h𝐷𝑖

∈ R𝑑𝑒𝑚𝑏 is the se-
mantic embedding for the 𝑖-th article. Articles can show potential
relationships and reflect eventful clues. For example, articles may
share similar topics. If a topic is mentioned in many articles, we
think it is important in current context. Based on this intuition, we
incorporate a self-attention mechanism [38] to capture the latent
information between articles and further enhance the semantic rep-
resentation of each article. Formally, we use matrix H𝐷 to denote
the semantic embedding of all articles collectively. Three weight
matrices are applied to H𝐷 to obtain Query, Key, Value matrices,
respectively. We map query semantics to a set of key semantics and
then output the best weighted semantic values:

H′
𝐷 = Attention(𝑄,𝐾,𝑉 ) = Softmax(

(W⊤
𝑞 H𝐷 )⊤W⊤

𝑘
H𝐷√

𝑑𝑘

)W⊤
𝑣 H𝐷 , (2)

where W𝑞,W𝑘 ,W𝑣 ∈ R𝑑𝑒𝑚𝑏×𝑑𝑘 are learnable matrices and H𝐷 ∈
R𝑑𝑒𝑚𝑏×|𝐷 | represents the semantic embeddings of all articles. h′

𝐷𝑖
∈

R𝑑𝑘 is the semantic embedding of the 𝑖-th article after the atten-
tion calculation. Note that for simplicity, we have omitted 𝑡 when
representing document information.

Next, we concatenate the frequency embedding vector and se-
mantic embedding vector of each article followed by a linear layer



𝑓𝑠 (·). We also include a skip connection of the frequency embed-
ding to allow gradients to flow through multiple levels directly in
the network:

o𝐷𝑖
= ReLU

(
𝑓𝑠 (h𝑡𝑐 ⊕ h′

𝐷𝑖
)
)
+ h𝑡𝑐 . (3)

Here o𝐷𝑖
∈ R𝑑𝑐 is the context embedding for events extracted

from the 𝑖-th article and ⊕ is concatenation. Based on the above
calculation, event frequency information at time 𝑡 flows to the
feature of each article available at time 𝑡 .

Level 3 Contextualized Graph Learning Each event extracted
from a news article consists of a subject (𝑣), an event type (𝑟 ), and
an object (𝑢): 𝑣

𝑟→ 𝑢. Events that appear in different articles may
be connected when sharing the same subjects or objects. Given a
location, the set of events extracted from all articles on the same day
constitutes an event graph. At this level, we model relational event
embeddings in the form of nodes (entities) and edges (event types)
in an event graph. Next, we introduce edge embedding learning
and node embedding learning.

In our problem setting, each event is provided with text knowl-
edge besides the relational information in the event graph because
events are extracted from documents (i.e, news articles). Prior work
introduces a fusion method to enhance the information of enti-
ties and event types using word graphs [9]. This approach may
involve random noise because words usually cannot encode impor-
tant context information when only two or three hop neighbors
are considered. Meanwhile, words include only local rather than
global information in an article. To solve this problem, we introduce
a contextualized graph learning method, which propagates event
graphs by fusing higher-level global context embeddings.

For each edge in an event graph, we define a general event vector
by concatenating features of subject, event type, and object. For
all the events corresponding to a news article 𝐷𝑖 , we incorporate
the context embedding into each event vector. The formal steps are
defined as:

a𝑟 = a(𝑣,𝑟,𝑢) = ReLU
(
𝑓𝑢
(

o𝐷𝑖︸︷︷︸
context

⊕ 𝑓𝑒 (a𝑣 ⊕ a𝑟 ⊕ a𝑢 )︸               ︷︷               ︸
event tuple info.

) )
, (4)

where 𝑓𝑒 (·), 𝑓𝑢 (·) are linear layers. a𝑣, a𝑢 ∈ R𝑑𝑔 denote subject and
object embeddings. The contextual event embedding a(𝑢,𝑟,𝑣) is not
fixed for the event type 𝑟 , as it encodes information from the event
tuple and the context information (o𝐷𝑖

) from the document. Here,
we use contextual event embeddings to update the edge embedding,
which also means that the contextual event information is stored
in the edge. Then, we update node features by using the contextual
event embedding in a graph message-passing network. Specifically,
we perform composition 𝜙 on a neighboring node 𝑣 with respect
to the edge 𝑟 using a similar method in CompGCN [37] but with
contextual event embedding:

a(𝑙+1)𝑢 = ReLU
( ∑
(𝑣,𝑟 ) ∃(𝑣,𝑟,𝑢) ∈𝐺𝑡

W(𝑙)𝜙
(
a(𝑙)𝑣 , a(𝑣,𝑟,𝑢)

) )
, (5)

where W(𝑙) ∈ R𝑑𝑔×𝑑𝑔 is the weight matrix at the 𝑙-th propagation
layer. 𝜙 is a non-parametric composition operator (e.g., multipli-
cation). At the first layer a(0)𝑣 = a𝑣 . Note that edge embedding
vectors are updated only once, while node embedding vectors are
updated by including information from multi-hop neighbors. At

this level, the contextual information from higher-level data is in-
tegrated into relational embedding learning, so that the edge and
node embeddings in an event graph are more informative.

To reduce the spatial size of representations and obtain salient
features, we apply a max pooling layer over the embedding of the
nodes and edges respectively:

ū =
𝑁𝑢

Max
𝑘=1

(
a𝑢=𝑘

)
, r̄ =

𝑁𝑟

Max
𝑘=1

(
a𝑟=𝑘

)
, (6)

where 𝑁𝑢 , 𝑁𝑟 denote the size of nodes and edges in an event graph.
Temporal Feature Learning After we learn contextualized

relational embeddings of nodes and edges (denoted as {ū, r̄}𝑡−𝑤+1:𝑡 )
from time 𝑡 −𝑤 + 1 to time 𝑡 , we model the temporal dependency
of features. We employ a Gated Recurrent Units (GRU) model [6]
to obtain the final embedding vector for forecasting:

h𝑡 = GRU
(
ū𝑡 ⊕ r̄𝑡 , h𝑡−1

)
, (7)

where ū𝑡 ⊕ r̄𝑡 is the input at time 𝑡 , and h𝑡−1 ∈ R𝑑𝑓 is the hidden
state at time 𝑡 − 1. The final hidden state h𝑡 is then utilized in the
final prediction in Eq. 1. Other recurrent networks can be applied.

OptimizationWe compare predictions with ground truth obser-
vations and optimize the cross entropy loss across different labels:

L = −
𝑁∑
𝑛

𝑀∑
𝑚

𝑌𝑛 [𝑚] log𝑌𝑛 [𝑚] + Ω(Θ), (8)

where 𝑌 is the ground truth label and 𝑌 = 𝑃 (𝑌 ) is the model
prediction. The time superscript is omitted here.𝑀, 𝑁 represents
the number of labels and samples. Ω(Θ) stands for the ℓ2-norm
regularization for all training parameters. All the model parameters
will be trained and optimized by back-propagation.

Understanding the behavior of a model helps practitioners eval-
uate predictions and the trustworthiness of the model [29]. Next,
we introduce a new multilevel temporal interpretation method to
explain our event predictor.

4.2 Multilevel Explanation
To explain predictions made by the event predictor 𝐹 , we propose
an explainer module to provide multilevel explanations on both
text (i.e., news articles) and multi-relational graphs (i.e., events).

The learning objective Given an instance, our goal is to iden-
tify a subset of news articles 𝐷𝑠 ∈ 𝐷 and a subgraph 𝐺𝑠 ∈ 𝐺 of
events over the historical time window (𝑡 − 𝑤 + 1 : 𝑡) that are
important for the event predictor’s prediction𝑦𝑡+Δ. Following prior
work [5, 22, 43], we formalize the notion of importance using mu-
tual information (MI) and formulate our explanation module as the
following optimization framework:

Max
{𝐷𝑠 ,𝐺𝑠 }𝑡−𝑤+1:𝑡

𝑀𝐼

(
𝑦𝑡+Δ, {𝐷𝑠 ,𝐺𝑠 }𝑡−𝑤+1:𝑡

)
= 𝐻

(
𝑦𝑡+Δ

)
− 𝐻

(
𝑦𝑡+Δ

���{𝐷𝑠 ,𝐺𝑠 }𝑡−𝑤+1:𝑡 ), (9)

where 𝑦𝑡+Δ denotes the predicted class of the event model with
{c, 𝐷,𝐺}𝑡−𝑤+1:𝑡 as the input.𝐻 denotes the entropy. {𝐷𝑠 ,𝐺𝑠 }𝑡−𝑤+1:𝑡
is the explanatory results in the form of time series. Given an in-
stance, the mutual information quantifies the change in the prob-
ability of prediction 𝑦𝑡+Δ = 𝐹 ({c, 𝐷,𝐺}𝑡−𝑤+1:𝑡 ) when the input
news article data are limited to {𝐷𝑠 }𝑡−𝑤+1:𝑡 and the event graphs



are limited to {𝐺𝑠 }𝑡−𝑤+1:𝑡 . Direct approximation of the above ob-
jective function is intractable since it requires summing over all
combinations of feature subsets. We consider a relaxation by using
parameterized neural networks to learn the scores of news arti-
cles and events. This operation is similar to “attention” [1] where
the weight of each feature is parametrized by a function of the
respective feature itself.

To build the interpretation network, we first introduce reference
embedding, which is regarded as a guideline for selecting important
features at each historical time step. h𝑡 is the global latent repre-
sentation used for the final event prediction (Eq. 1). Intuitively, we
assume h𝑡 encodes important information about historical events.
{ū𝑡 , r̄𝑡 } are input of temporal feature learning. Based on this infor-
mation, we define the reference embedding at time 𝜏 as a linear
transformation 𝑓𝑧1 (·) of the concatenation of h𝑡 and {ū𝑡 , r̄𝑡 } :

z𝜏 = 𝑓𝑧1 (h𝑡 ⊕ ū𝜏 ⊕ r̄𝜏 ), 𝑡 −𝑤 + 1 ≤ 𝜏 ≤ 𝑡 . (10)
Identifying key articles Given the collection of news articles

at time 𝑡 , we obtain the vector representation h𝐷𝑖
for an article

from the predictor. To evaluate the importance of each article, we
propose to calculate a score for each article based on the semantic
embedding of the article and the reference embedding. Formally,
we employ the additive attention function [1]:

𝛼𝐷𝑖
= v⊤Tanh

(
W𝑎 (h𝐷𝑖

⊕ z𝑡 )
)
, (11)

where v,W𝑎 are learnable parameters of the explainer. To binarize
the scores for feature selection, we first use Sparsemax [23] to
normalize the scores to a sparse distribution. Sparsemax was used
for sparse attention weights [7]. Given the vector form of the scores
𝜶𝐷 of all articles at time 𝑡 , the formal binary transformation is:

m𝐷 = Tanh
(
Sparsemax(𝜶𝐷 )/𝜖

)
, (12)

where 𝜖 = 1𝑒 − 12 is a small value to enforce a positive value
to 1. m𝐷 is the learned news article mask. Thus, articles at each
timestamp are reduced from 𝐷 to 𝐷𝑠 . To optimize the explainer
with the selected features, the columns representing the articles
that are masked in H𝐷 will be filled with zero vectors.

Identifying key events In an event graph, nodes are entities
and edges are event types, and each connection represents an event.
To identify important events, we focus on selecting edges in a graph
and connected nodes are automatically considered to be important.
Specifically, we first define an event embedding as a linear trans-
formation 𝑓𝑒𝑥 (·) of its edge embedding and embeddings of its two
connected nodes. Then, we apply a nonlinear transformation on
combined reference embeddings and event embeddings to evaluate
the importance of this event:

𝛼 (𝑣,𝑟,𝑢) = Tanh
(
𝑓𝑧2

(
z𝑡 ⊕ 𝑓𝑒𝑥 (a𝑣 ⊕ a𝑟 ⊕ a𝑢 )

) )
. (13)

Here 𝑓𝑧2 (·) is a linear layer and the Tanh function regularizes the
input value. To obtain event masks, we employ the same method
as above to binarize the scores. To reflect multi-level attributes
while evaluating an event, we also include the article score from
which the event is extracted. We expect that events extracted from
important articles have a higher chance to be identified. The steps
are defined as follows:

m(𝑣,𝑟,𝑢) = Tanh(Sparsemax(𝜶 (𝑣,𝑟,𝑢) + 𝜶𝐷 )/𝜖). (14)
With the event mask m(𝑣,𝑟,𝑢) , the event graph 𝐺 is reduced to 𝐺𝑠 .
After learning the masks for multiple time steps, we obtain the se-
quence of explanatory data {𝐷𝑠 ,𝐺𝑠 }𝑡−𝑤+1:𝑡 . These data are fed to

Table 2: Dataset Statistics. Loc. indicates the number of lo-
cations the events are selected. GEO represents the geo-
graphic granularity of the data. Note that each sample in our
datasets refers to one location.

Dataset Loc. Events News Entities GEO Samples

India 5 138,202 84,616 3,246 City 5,468
Russia 2 134,635 70,369 4,654 City 2,466
Thailand 5 99,932 52,424 2,491 City 2,505
Egypt 5 268,364 71,049 2,977 City 2,029
Covid-19 10 410,240 307,346 3,465 State 2,523

the event predictor together with event frequency data {c}𝑡−𝑤+1:𝑡
for optimizing the objective function (Eq. 9). The trainable parame-
ters are v,W𝑎 and the weights in layers of 𝑓𝑧1 (·), 𝑓𝑧2 (·), 𝑓𝑒𝑥 (·).

5 EXPERIMENTAL SETUP
5.1 Datasets
We prepare five datasets from two data sources for evaluation: four
political event datasets and one epidemic event dataset. Among the
four political event datasets, two of them, India (IN) and Russia (RU),
contain political events from 01/01/2012 to 12/31/2016 collected
from Integrated Conflict Early Warning System (ICEWS) [4]. The
other two, Thailand (TH) and Egypt (EG), are collected from Global
Database of Events, Language, and Tone (GDELT) [20] ranging
from 01/01/2017 to 12/31/2019. These events are encoded into 20
main categories (e.g., protest, fight, consult) using Conflict and Me-
diation Event Observations (CAMEO) [3] event codes. Each event
has attributes such as geolocation, time (day, month, year), category,
entity (subject, object) and its associated text. Event text is available
in the ICEWS data source. For GDELT, we manually crawl news
articles using provided event source URLs.1 In the experiments,
we focus on predicting one type of events with significant impact:
Protest. Thus this task becomes a binary classification problem. The
epidemic event dataset, Covid-19 (C-19), is used for predicting the
trend of newly reported Covid-19 cases in the United States.2 The
ground truth data include the average daily new case growth of
every 7 days from 03/15/2020 to 12/08/2020 in 10 states. We catego-
rize numerical values into three classes and perform a multi-class
classification task. A growth rate greater than 8% is a substantial
increase, less than 0% is a decline, and others imply small growth.
The proportions of the three types of samples are 0.0959, 0.4598,
and 0.4443 respectively. The input data are obtained from GDELT,
maintaining the same format as other political event datasets. We
select news articles related to Covid-19 by filtering with a set of
predefined keywords, e.g., coronavirus and quarantine. The data
statistics are shown in Table 2.

5.2 Evaluation Metrics
We use the following metrics to evaluate our method:

1https://github.com/codelucas/newspaper
2https://github.com/nytimes/covid-19-data

https://github.com/codelucas/newspaper
https://github.com/nytimes/covid-19-data


Table 3: Prediction results showing the mean and standard
deviation of F1 score on all datasets. Bold denotes the best
and underline denotes the second best.

Method Thailand Egypt India Russia Covid-19

DNN 0.643 (.02) 0.631 (.01) 0.609 (.01) 0.568 (.06) 0.504 (.03)
RGCN 0.629 (.04) 0.605 (.02) 0.578 (.02) 0.616 (.01) 0.575 (.05)
CompGCN 0.648 (.02) 0.524 (.05) 0.573 (.03) 0.589 (.03) 0.527 (.03)
GRU 0.633 (.04) 0.648 (.01) 0.605 (.01) 0.578 (.03) 0.593 (.02)
DynGCN 0.580 (.02) 0.509 (.02) 0.607 (.03) 0.597 (.02) -
RENET 0.612 (.05) 0.648 (.02) 0.595 (.02) 0.578 (.03) 0.574 (.03)
Glean 0.665 (.02) 0.653 (.03) 0.614 (.01) 0.596 (.01) 0.616 (.02)

CMF 0.683 (.01) 0.675 (.01) 0.621 (.01) 0.623 (.01) 0.645 (.01)
CMFw/o freq 0.689 (.01) 0.652 (.02) 0.607 (.01) 0.606 (.01) 0.650 (.02)
CMFw/o news 0.657 (.04) 0.681 (.01) 0.601 (.03) 0.599 (.02) 0.584 (.02)
CMFw/o event 0.614 (.05) 0.652 (.02) 0.589 (.02) 0.555 (.03) 0.574 (.01)

Prediction Performance. We use F1 score to evaluate the perfor-
mance of event prediction. For the Covid-19 dataset, which is formu-
lated as a multi-class classification task, we consider the weighted
averaging of F1 scores over all classes.

Explanation Performance. we adopt Accuracy and Area under
the ROC Curve (AUC) to quantitatively evaluate the proposed ex-
planation method and conduct case studies to further demonstrate
the effectiveness of our proposed method in interpretation.

5.3 Comparative Methods
We compare our event forecasting method with several state-of-
the-art baselines with different features: (1) Models using event
frequency features: Deep Neural Networks (DNN), GRU [6]; (2)
Models using graph based features (word graphs or event graphs):
RGCN [31],CompGCN [37],DynGCN [8],RENET [18],Glean [9].
Note that DynGCN is a protest prediction model, so we do not
compare this model on the Covid-19 dataset. For static models
(LR, DNN, RGCN, CompGCN), the input is the accumulation of
data in historical time steps. To estimate the importance of multi-
level features in our model, we vary our base model in three ways:
CMFw/o freq removes the top-level event frequency embedding,
CMFw/o news removes the middle-level features, and CMFw/o event
deletes the bottom level and uses the pooling of context embeddings
as input to the GRU model.

For explanations, we compare our explainer with two methods
that are able to interpret the proposed event predictor: A gradient
(G) [34] method and a random (R) method. The gradient method
directly uses gradients with respect to events and document embed-
dings as feature importance. Specifically, we obtain the importance
score of an event by adding the mean values of the feature vectors
of subject, event type, and object in this event. Similar methods are
applied for news articles. The key features are selected through the
Sparsemax function (i.e., Eq. 12, 14). The random method generates
random masking scores for events and news articles.

5.4 Parameter Setting
To obtain vector representations of text data, we pre-train two
Sent2vec models [27] using all available news articles from ICEWS
and GDELT, respectively. We randomly split the data into training,
validation, and test sets at a ratio of 60%-20%-20% for each dataset.

To reduce the sparsity of the data, we randomly remove a small part
of the negative samples from the India, Russia and Thailand datasets.
The positive rates of event datasets of India, Russia, Thailand and
Egypt are 0.477, 0.325, 0.194 and 0.306 respectively.

For hyperparameters, the historical time window size 𝑤 is set
to 7. The lead time Δ is set to 1 and 10 for political event datasets
and the epidemic event dataset, respectively. The number of en-
coded events 𝑁𝑒 is set to 291 according to CAMEO event codes. The
dimension of sentence embedding 𝑑𝑒𝑚𝑏 is 300. The feature dimen-
sions 𝑑𝑐 , 𝑑𝑓 , 𝑑𝑔 are set to be the same, and are grid searched from
{64, 128}. The feature size for semantic information 𝑑𝑘 is searched
from {32, 64}. The number of layers for node embedding learning
in event graphs (Eq. 5) is searched from {1, 2}. We employ 1-layer
GRU [6] as our temporal feature learning. All parameters, including
the embeddings of all entities and event types, are initialized with
Glorot initialization [15] and trained using the Adam [19] optimizer
with weight decay 1e-5 and dropout rate 0.5. The learning rate
is searched from {0.001, 0.003, 0.005}. The batch size is 32 for all
datasets. We set the maximum number of epochs to 25. Our model
usually converges within 10 epochs for political event datasets
and 20 epochs for epidemic event datasets. The best models are
selected by early stopping when the F1 score does not decrease for
5 consecutive epochs. All experimental results are the average of 5
randomized trials. All code is implemented using Python 3.7.9 and
Pytorch 1.7.0 with CUDA 9.2.

6 EXPERIMENTAL RESULTS
6.1 Results of Event Prediction
The F1 scores of event forecasting tasks on all datasets are shown
in Table 3. We divide all models into static and temporal models
based on their ability to model time dependencies. We observe that
the predictive performance of temporal models is overall better
than static models, especially on Egypt and Covid-19 datasets. Mod-
els using event frequency data (DNN, GRU) have achieved good
F1 scores on Thailand, Egypt and India datasets, demonstrating
the importance of past event frequency patterns. Methods using
event graphs in a static or temporal manner also have good F1
values (RGCN, CompGCN, RENET, Glean). The performance of
the dynamic graph model DynGCN is unstable, and it does not
perform well on datasets from GDELT. This is because the size of
news articles and events from GDELT is much larger than ICEWS.
Note that the overall F1 score for political events is lower than the
results reported in the DynGCN paper, which is mainly due to
different label settings. In the DynGCN paper, negative samples
are constructed based on the event occurrence of target dates as
well as the previous three days. We relax this setting by ignoring
the three-day historical constraint. The proposed method involving
multilevel feature learning outperforms the baselines on all datasets
in F1 score. The results suggest that the introduction of multiple
types of features plays a key role in improving prediction scores.

6.1.1 Ablation Study. Results of the ablation study are shown at
the bottom of Table 3. Comparing the variants of our method, we
observe that removing lower level features leads to non-trivial
decreases of F1, which indicates the importance of detailed in-
formation in event prediction. The variant CMFw/o freq without
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Figure 3: F1 score with varying lead time.
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Figure 4: F1 score with varying historical days.

frequency features sometimes outperforms the full model. A pos-
sible reason is that the frequency information is less informative
than other types of features. The variant CMFw/o news neglecting
news article features achieves the best F1 on the Egypt dataset. This
can be explained by the low ratio of the number of news to the
number of events in this dataset. Many events lack source news
articles, which makes contextual information less helpful. The F1
score of CMFw/o event is the worst, which shows that graph learn-
ing on event graphs contributes more to the final result. Overall,
the results show the importance of multilevel feature learning in
improving event prediction ability in terms of F1 score. Meanwhile,
changing the size of hidden layers in our model can control the
flow of information from the upper layer to the lower layer, thereby
maximizing the generalization ability of the model on different
datasets.

6.1.2 Sensitivity Analysis. We investigate the sensitivity of lead
time and historical days in the proposed method. We report the
results on Egypt and Covid-19 datasets in event prediction tasks.
Two representative baselines Glean and DNN are selected.

Figure 3 shows the F1 score in different lead time settings on the
two datasets. The proposed model achieves the best F1 score when
the lead time is 6 days on the Egypt dataset and approximately 3 or
5 days on the Covid-19 dataset. The models’ prediction performance
will decrease in a longer lead time, mainly due to the information
gap between the historical data and the forecasting time. Our model
outperforms the baselines inmost cases.We report the F1 score with
varying historical days from 2 to 20 in Figure 4. We can observe that
our model can achieve higher F1 scores when using more distant
historical records. However, when the length is greater than 7, the
F1 score stabilizes and may decrease slightly. It implies that more
historical data cannot enhance the predictive ability of the model.
Our model is more stable than the other two models and has lower
variance, especially for shorter historical time windows.

6.2 Results of Explanation

Table 4: Performance
comparison for ex-
planation methods.

CMF G R

AUC

TH 0.86 0.74 0.64
EG 0.82 0.63 0.57
IN 0.82 0.77 0.56
RU 0.92 0.81 0.68

Accuracy

C-19 0.83 0.48 0.40

6.2.1 Quantitative Evaluation. Since
there are no ground truth data for
explanations, we conduct an exper-
iment to evaluate how close an
explanation is to approximate the
prediction of the proposed model,
thereby evaluating interpretation fi-
delity [24]. Table 4 shows the re-
sults of three explainers by formaliz-
ing quantitative interpretation evalu-
ation as a classification problem [22,
43]. The ground truth is the predic-
tion from the proposed event pre-
dictor using full input data, and the
prediction score is the output of the
event predictor using only selected

explanatory data. This evaluates how much an explainer under-
stands the action of a classifier. We compare our explainer with a
gradient method (G) and a random model (R). All explainers aim
to interpret the same event predictor. We report AUC on the binary
classification task and accuracy on the multi-class classification
problem. We observe that the proposed explainer approximates
model predictions better than other methods.

6.2.2 Case Studies. We showcase two examples of identified key
articles and events from the proposed method when predicting
Covid-19 trends. Note that we use input data from the past 7 days
and make predictions on the 10th day in the future. As shown in
Figure 5, we list part of the important features in the form of arti-
cles and event graphs. In this example, our model predicts that the
number of new covid-19 cases in California will increase signifi-
cantly on Mar. 30. We summarize the main topic of each article in
one sentence. According to the provided explanation, new positive
cases were detected in California, and the allocation of medical
resources was in progress. This shows that the epidemic is getting
worse. Congestion and chaos at US airports suggest the possible
spread of the virus. Social distancing policies were issued, and some
people were preparing to respond to covid-19 emergencies. Such in-
formation shows that people were taking action to control the virus.
Because the impact of infectious viruses is usually delayed, it is easy
to understand why the model predicted “increase” (small growth)
given the provided evidence. The relational graphs identified from
the proposed model capture key entities that play a pivotal role in
the development of Covid-19. To show how the model interprets
a “decrease” (decline) trend, we provide another example for New
York on Aug. 29 in Figure 5. From the identified data, we can see
some virtual activities as responses to Covid-19. We think people
are participating in various activities online instead of on-site. This
behavior effectively helps prevent the spread of the virus.

We also present an explanation example of the protest event
prediction as shown in Figure 6. The information shown on the left
intends to explain why the proposed model predicts that protest
events are likely to occur in New Delhi, India on May 2, 2015.

6.2.3 Stability Analysis. Stability assesses the similarity of expla-
nations for similar instances [24]. The lack of stability can lead
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to a high variance in interpretation results. In the sequential ex-
planation of event prediction, stability property is important due
to the temporal dependency of the data. For example, if the event
predictions for two consecutive days are the same, in the case of
overlapping historical data, the interpretations are expected to be
similar. To evaluate this property of our model, we conduct an anal-
ysis on Russia and Thailand datasets. For each dataset, we collect all
sample pairs that have the same location and whose predicted time
differs by 1 day. Thus, for each pair of samples, they should have
common data in their input window. We evaluate the similarity of
the explanations of the two samples by averaging the “Intersection
over Union” of news articles and events. The prediction difference
between two samples is the difference in the prediction scores of
the positive class. The results are shown in Figure 7, where each
point represents the evaluation of a pair of similar samples. We
can observe that the overall evaluation of our method follows the
pattern that points with larger prediction differences have lower in-
terpretation similarities and vice versa. The gradient method leads
to a high degree of similarity of almost all points. The points in the
lower-left corner are the result of sparsity in the input data given
that not every historical day has data.
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Figure 7: Stability analysis on explanation results.

7 CONCLUSION AND FUTUREWORK
Interpretation is crucial in societal event prediction because it can
produce supporting evidence for reliable decision-making in var-
ious fields. In this paper, we present a novel framework for fore-
casting future events and providing multilevel explanations for
predictions. We demonstrated the effective prediction performance
of the proposed model on real-world political and epidemic event
datasets. We also show the interpretability of the model through
quantitative analysis and real-world case studies. One of the limita-
tions of this work is that we only model news and event information
in specific locations for prediction and interpretation while ignor-
ing the influence of the global context. Future work will consider
exploring spatial dependencies in event data and explain event
predictions from different locations.
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