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Abstract—Federated learning (FL) is a machine learning
paradigm where a shared central model is learned across dis-
tributed devices while the training data remains on these devices.
Federated Averaging (FedAvg) is the leading optimization method
for training non-convex models in this setting with a synchronized
protocol. However, the assumptions made by FedAvg are not
realistic given the heterogeneity of devices. First, the volume
and distribution of collected data vary in the training process
due to different sampling rates of edge devices. Second, the edge
devices themselves also vary in latency and system configurations,
such as memory, processor speed, and power requirements. This
leads to vastly different computation times. Third, availability
issues at edge devices can lead to a lack of contribution from
specific edge devices to the federated model. In this paper, we
present an Asynchronous Online Federated Learning (ASO-Fed)
framework, where the edge devices perform online learning with
continuous streaming local data and a central server aggregates
model parameters from clients. Our framework updates the
central model in an asynchronous manner to tackle the challenges
associated with both varying computational loads at heteroge-
neous edge devices and edge devices that lag behind or dropout.
We perform extensive experiments on a benchmark image dataset
and three real-world datasets with non-IID streaming data. The
results demonstrate ASO-Fed converging fast and maintaining
good prediction performance.

Index Terms—Asynchronous federated Learning, Online learn-
ing, Edge devices, Non-IID data

I. INTRODUCTION

As massive data is generated from modern edge devices
(e.g., mobile phones, wearable devices, and GPS), distributed
model training over a large number of computing nodes has
become essential for many machine learning applications.
With increasing popularity and computation power of these
edge devices, federated learning (FL) has emerged as a po-
tentially viable solution to enable the training of statistical
models locally on the devices [1]–[3]. FL involves training a
shared central model from a federation of distributed devices
under the coordination of a central server; while the training
data is kept on the edge device. Each edge device performs
training on its local data and updates model parameters to the
server for aggregation. Many applications can leverage this FL
framework such as learning activities of mobile device users,
forecasting weather pollutants, and predicting health events.

Many prior FL approaches use a synchronous protocol
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Fig. 1. Illustration of Synchronous vs. Asynchronous update. In synchronous
optimization, Device 1 has no network connection and Device 3 needs more
computation time, thus the central server has to wait. Asynchronous updates
do not need to wait.
(e.g., FedAvg [1] and its extensions [2]–[6]), where at each
global iteration, the server distributes the central model to
a selected portion of devices (clients) and aggregates all
updates from these clients by applying a weighted averaging
strategy.1 These methods are costly due to a synchronization
step (shown in Figure 1), where the server needs to wait
for all local updates before aggregation [7]. The existence of
lagging devices (i.e., stragglers, stale workers) is inevitable due
to device heterogeneity and network unreliability. To address
this problem, asynchronous federated learning methods [8],
[9] were proposed, where the server can aggregate without
waiting for the lagging devices. However, these asynchronous
frameworks assume that the number of data samples on each
device will not change during the training process, which is
not practical in real-life settings. Data on local devices may
increase during training, since sensors on these distributed
devices usually have a high sampling frequency. In addition,
Non-IID (i.e., not independent and identically distributed)
and highly imbalanced characteristics of device data create
challenges for effective model training [10]. In this paper, we
focus on the question: Can we develop an asynchronous online
federated learning framework with a convergence rate guar-
antee while maintaining an optimal prediction performance?

We propose an asynchronous online federated learning
framework (ASO-Fed), where the central model does not
wait for collecting and aggregating the gradient information

1We use ‘client’ and ‘device’ interchangeably in this paper.978-1-7281-6251-5/20/$31.00 ©2020 IEEE



from lagging clients, and clients perform online learning to
deal with local streaming data. By design, ASO-Fed enables
wait-free computation and communication, which ensures the
model always converges better than synchronized FL frame-
works. This study focuses on improving prediction perfor-
mance and computation efficiency in FL instead of communi-
cation costs or privacy issues. ASO-Fed shares similar privacy
benefits as other general FL algorithms [1]–[4] as the data does
not leave the edge devices.

In practice, we find that ASO-Fed is particularly useful for
streaming data with heterogeneous devices having different
computing/communication speeds. Besides the prediction per-
formance, we also simulate different network delays for each
device to show the computational efficiency of ASO-Fed. We
summarize the main contributions of this paper as follows:
• We propose an asynchronous federated learning framework

(ASO-Fed) under a non-IID setting that allows updates
from clients with continuously arriving data. The proposed
framework learns inter-client relatedness effectively using
regularization and a central feature learning module. We
provide theoretical guarantees for the convergence of this
proposed model.

• We design a novel online learning procedure with a decay
coefficient to balance the previous and current gradients on
clients when handling streaming data.

• We introduce a dynamic learning strategy for step size adap-
tation on local devices to mitigate the impact of stragglers on
the convergence of the central model. We show empirically
that ASO-Fed is robust against data heterogeneity and net-
work connections with high communication delays between
the server and some clients.

• We conduct extensive experiments on real-world and bench-
mark datasets, including a comparison with other state-of-
the-art models. The results demonstrate that the proposed
method achieves competitive prediction performances and
converges fast with lower computation cost.

II. RELATED WORK

A. Distributed Optimization
As massive data are generated from edge devices such as

mobile phones, wearable devices, and sensors, the computing
power on these devices is also growing rapidly. Learning
models directly on these distributed devices is gaining an
increasing amount of attention. Multi-task learning models are
not suitable for edge device training given that they assume
all clients (devices) participate in each training round. This
requires that all clients are available because each client is
training an individual specific model [11]. However, edge
devices could be frequently offline during the training process
due to unreliable networks or other factors. Parameter servers,
where server nodes maintain globally shared parameters with
data distributed on local nodes, however, often suffer from
problems such as high network bandwidth or communication
overhead [1], [12], [13]. Due to problems with stragglers and
the non-IID character of edge device data, numerous other
distributed optimization methods [12], [14]–[18] in recent

years are also not suitable for on-device learning. Federated
Learning provides a promising solution that is capable of deal-
ing with heterogeneous devices across adhoc communication
networks.

Federated optimization methods have shown significant im-
provements on balancing communication versus computation
over traditional distributed approaches [19], [20]. Federated
learning was first introduced by McMahan et al. [1] and has
been benchmarked on image and language datasets. Many
extensions have been explored based on this original federated
learning setting [2]–[4], [21], [22]. A better approach to deal
with non-IID data distribution is proposed by sharing a small
amount of data with other devices [23]. However, all these
studies update the federated model in a synchronous fashion
and do not tackle the problem of stragglers and dropouts.

Smith et al. [10] developed a primal-dual optimization
method within a multi-task learning paradigm. This involved
learning separate models for each device and dealing with
stragglers. However, this approach was not suitable for non-
convex formulations (e.g., deep learning), where strong du-
ality is no longer guaranteed. Xie et al. [8] proposed an
asynchronous update procedure for federated optimization by
updating the central model with weighted averaging, but this
did not consider real-world scenarios where edge devices faced
continuous streaming data. Our proposed model assumes no
constraints on the server aggregation procedure and obtains the
optimal prediction performance on clients with heterogeneous
data. In addition, we also incorporate online learning on clients
to leverage the continuous arrival of new data points.

B. Online Learning with Multiple Clients
Online learning methods operate on a group of data in-

stances that arrive in a streaming fashion. Most existing work
in online learning across multiple clients are within the multi-
task learning paradigm. Each client seeks to learn an individual
model, in conjunction with related clients. The online learning
problem with multiple tasks was first introduced by Dekel et
al. [24]. The relatedness of participated tasks is captured by
a global loss and aims to reduce the cumulative loss over
multiple rounds. To better model task relationships, Lugosi et
al. [25] impose a hard constraint on K simultaneous actions
taken by the learner in the expert setting; Agarwal et al.
[26] use matrix regularization and Murugesan et al. [27] learn
task relationship matrix automatically from the data. All these
methods are proposed with synchronized protocols and not
adaptable for real-world asynchronous learning.

Jin et al. [28] developed an asynchronous distributed frame-
work to perform local training and central learning alterna-
tively with a soft confidence-weighted classifier. However, it
assumes that the local data is normally distributed, which is
restrictive for non-convex neural network objectives. Besides,
it lacks theoretical convergence guarantees and also requires
each client to send a portion of its local data to the server.

Different from the above online learning approaches, we
design an iterative local computation procedure to balance the
previous and current gradients.



III. DEFINITIONS AND PRELIMINARIES

In this section, we first present the general form of feder-
ated learning. Then we briefly introduce the commonly used
FedAvg [1] and identify the issues in synchronized federated
settings.

Assume that we have K distributed devices. Let Dk denote
data captured on device k, and define nk = |Dk| to be the
number of samples on device k. We denote N =

∑K
k=1 |Dk|

as the total number of samples in K devices. Assuming for
any k 6= k

′
, Dk

⋂
Dk′ = ∅. We then define local empirical

loss of client k as:

fk(wk)
def
=

1

nk

∑
i∈Dk

`i(xi, yi;wk). (1)

where `i(xi, yi;wk) is the corresponding loss function for data
point {xi, yi} and wk is the local model parameter. We can
obtain the following central objective function:

F (w) =

K∑
k=1

nk
N
fk(w). (2)

where w is the aggregated central model.2 The overall goal is
to find a model w∗ with:

w∗ = arg minF (w). (3)

A. Synchronized Federated Optimization
As shown in Algorithm 1, for FedAvg, at each global itera-

tion, a subset of the devices are selected to run gradient descent
optimization (e.g., SGD) locally to optimize the local objective
function fk on device k. Then these local devices communicate
their local model updates to the server for aggregation. With
heterogeneous local objectives fk, carefully tuning of local
epochs is crucial for FedAvg to converge. However, a larger
number of local epochs may lead each device towards the
optima of its local objective as opposed to the central objective.
Besides, data continue to be generated on local devices which
increases local gradient variations relative to the central model.
Therefore, we incorporate a constraint to restrict the amount
of local deviation by penalizing large changes from the current
model at the server. We explain this in detail in Section IV-B.

Most synchronized federated optimization methods have a
similar update structure as FedAvg. One apparent disadvantage
of this structure is that, at each global iteration, when one
or more clients are suffering from high network delays or
clients which have more data and need longer training time,
all the other clients must wait. Since the server aggregates
after all clients finish, the extended period of waiting time in
a synchronized optimization protocol will lead to idling and
wastage of computing resources [29], [30].

IV. PROPOSED METHOD

We propose to perform asynchronous online federated learn-
ing where the server begins to update the central model w
after receiving updates from one client, without waiting for

2We use w and wk to represent the central model and client model,
respectively

Algorithm 1 Algorithm for FedAvg
1: Input: K indexed by k, local minibatch size B, local

epochs E and learning rate η.
2: Central Server:
3: for global iterations t = 1, 2, ..., T do
4: Server chooses a subset St of K devices at random
5: for each client k ∈ St in parallel do
6: wt+1

k ← ClientUpdate(k,wt )
7: wt+1 ←

∑K
k=1

nk

N w
t+1
k

8: ClientUpdate(k,wt):
9: device k updates wt for E epochs of SGD on fk with η

10: return wt+1
k to server
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Fig. 2. Illustration of update procedure for the proposed ASO-Fed model.
Server aggregates after receiving update from one client, and local clients
may have new data samples during the training process. Each w is used to
represent the whole central/local model, ∇ζ is the gradient of local client.

the other clients to finish. The server maintains the current
central model w, while all clients maintain their own copies
(wk) of w in the memory. Note that the copy of w at one
client may be different from the copies at other clients.

Figure 2 illustrates the update procedure for ASO-Fed. The
server starts aggregation after receiving one client’s update,
and performs feature learning on the aggregated parameters to
extract a cross-client feature representation. Then the server
starts the next iteration and distributes the new central model
to the ready clients. Clients may have new data samples
during the training process. To better capture the inter-client
relatedness, we use a decay coefficient to balance the previous
and current local gradients with an iterative local computation
procedure. The approach of ASO-Fed is detailed in Algo-
rithm 2. We will explain each part in detail in the following
sections.

As an example in Figure 2, when the server node receives
the gradient uploaded from the lagging clients (e.g., Client
2), it has already updated the central model twice. We can



observe that there is an inconsistency in the asynchronous
update scheme when it comes to obtaining model parameters
from the server. Such inconsistency is common in the real-
world settings and is caused by data and system heterogeneity,
or network delay. We address this problem by learning a
global feature representation on the server and using a dynamic
learning step size for training local clients.
A. Learning on Central Server

The server aggregates the central model w after each global
iteration. At global iteration t+ 1, assume the server receives
an update from client k. Let wt+1 be the server model, wtk be
the local model of client k at iteration t, ∇ζk be the gradient
on the local data of client k, ηtk be the learning rate of client
k and N ′ = n1 + · · · + n′k + · · · + nK be the current total
number of data samples where nk and N becomes n′k and N ′

due to new data at client k. By aggregating the update from
client k, the server update is computed as follows:

wt+1 = wt − n′k
N ′

(wtk − wt+1
k )

= wt − n′k
N ′

(wtk − (wtk − ηtk∇ζk(wt)))

= wt − ηtk
n′k
N ′
∇ζk(wt).

(4)

Feature Representation Learning on Server. To address the
potential effect on model performance caused by asynchronous
updates, we apply feature representation learning on the server
to extract a cross device feature representation. Attention
mechanisms have shown to be effective in identifying key fea-
tures and their representations [31], [32]. Our feature learning
approach is inspired by this, and additionally, we combine
weight normalization to reduce the computation cost [33],
[34]. We use simple network architectures in this study so
that it can be easily handled by mobile devices. We apply
feature extraction on the first layer (e.g., LSTM or CNN in this
paper) after the input to generate the feature representation,
and denote the parameters of this layer as wt+1

(1) . For each
element wt+1

(1) [i, j] in column wt+1
(1) [j] of wt+1

(1) , we adopt the
below operations to obtain the updated wt+1

(1) :

αt+1
(1) [i, j]←

exp(|wt+1
(1) [i, j]|)∑

j exp(|wt+1
(1) [i, j]|)

, (5)

wt+1
(1) [i, j] = αt+1

(1) [i, j] ∗ wt+1
(1) [i, j]. (6)

B. Learning on Local Clients
In order to mitigate the deviations of the local models

from the central model, instead of just minimizing the local
function fk, device k applies a gradient-based update using
the following surrogate objective sk:

sk(wk) = fk(wk) +
λ

2
||wk − w||2. (7)

Local Update with Decay Coefficient. Data continue arriving
at local clients during the training process, so each client
needs to perform online learning. For this process, each client
requests the latest model from the server and updates the

Algorithm 2 Algorithm for ASO-Fed
1: Input: Multiple related learning clients distributed at

client devices, regularization parameter λ, multiplier rk,
learning rate η̄, decay coefficient β.

2: Initialize: hprek = hk = 0, vk = 0
3: Procedure at Central Server
4: for global iterations t = 1, 2, ..., T do
5: /* get the update on wt */
6: compute wt . [Eq.(4)]
7: update wt with feature learning . [Eq.(5) - Eq.(6)]
8: end for
9: Procedure of Local Client k at round t

10: receive wt from the server
11: Compute ∇sk
12: Set h(pre)

k = hk
13: Set ∇ζk ← ∇sk −∇s(pre)

k + h(pre)
k . [Eq.(7) -Eq.(10)]

14: Update wt+1
k ← wtk − rtkη̄∇ζk

15: Compute and update hk = βhk + (1− β)vk
16: Update vk = ∇sk(wt;wtk)
17: upload wt+1

k to the server

model with its new data. Thus there needs to be a balance
between previous model and current model. At global iteration
t, device k receives model wt from the server. Let ∇s(pre)

k be
the previous local gradients, the optimization of device k at
this iteration is formulated as:

∇ζk ← ∇sk −∇s(pre)
k + h(pre)

k , (8)

h(pre)
k = βh(pre)

k + (1− β)∇s(pre)
k . (9)

where h(pre)
k is used to balance the previous and current local

gradients and initialized to be 0, β is the decay coefficient to
balance the previous model and the current model. The update
procedure of h(pre)

k can be found in Algorithm 2.
With ηtk being the learning rate for client k, the closed form

solution for model update of client k is given by:

wt+1
k = wtk − ηtk∇ζk(wt)

= wtk − ηtk
(
∇fk(wtk)−∇s(pre)

k + h(pre)
k + λ(wtk − wt)

)
.

(10)
Dynamic Learning Step Size. In real-world settings, the
activation rates, i.e., how often clients provide updates to
the central model, vary due to a host of reasons. Devices
with low activation rates are referred as stragglers, which are
caused by several reasons such as communication bandwidth,
network delay or data heterogeneity. Thus, we apply a dynamic
learning step size with the intuition that if a client has more
data or poor communication bandwidth, the activation rate of
this client towards the central update will be small and thus
the corresponding learning step size should be large. Dynamic
learning step sizes are used in asynchronous optimization to
achieve better learning performance [35], [36]. Initially, we set
ηtk = η̄ for all clients. The update process (10) can be revised
as:

wt+1
k = wtk − rtkη̄∇ζk(wt). (11)



where rtk is a time related multiplier, and is given by
rtk = max{1, log(d̄tk)}, where d̄tk = 1

t

∑t
τ=1 d

τ
k is the average

time cost of the past t iterations. Then the actual learning
step size is scaled by the past communication delays. This
dynamic learning step size strategy can reduce the effect of
stragglers on model convergence. Since the stragglers usually
have longer delays, the larger step sizes are assigned to these
lagging clients to compensate for the loss.
C. Convergence Analysis

In this section, we prove theoretical analysis on the conver-
gence of ASO-Fed. First, we introduce some definitions and
assumptions for our convergence analysis.

Definition 1. (Smoothness) The function f has Lipschitz
continuous gradients with constant L > 0 (in other words,
f is L-smooth) if ∀x1, x2,

f(x1)− f(x2) ≤ 〈∇f(x2), x1 − x2〉+
L

2
||x1 − x2||2. (12)

Definition 2. (Strong convexity) The function f is µ-strongly
convex with µ > 0 if ∀x1, x2,

f(x1)− f(x2) ≥ 〈∇f(x2), x1 − x2〉+
µ

2
||x1 − x2||2. (13)

In order to quantify the dissimilarity between devices in
a federated network, following Li et al [37], we define the
following definition on local non-IID data.

Definition 3. (Bounded gradient dissimilarity): The local
functions ζk are V -locally dissimilar at w if E||(∇ζk(w))||2 ≤
||∇F (w)||2V 2.

With Definition 3 we further define V (w) =
√

E||∇F (w)||2
||(∇ζk(w))||2

when ||(∇ζk(w))||2 6= 0. When all the local functions are
the same, which is the samples on all the devices are in
IID fashion, we have V (w) → 1 for all w [37]. However,
in federated setting with heterogeneous data, we often have
V > 1 due to device discrepancies. Therefore, V ≥ 1, and
the larger V is, the larger the dissimilarity among the local
functions, which is the more heterogeneous the local data.

Further, we make the following assumptions on the objective
functions and introduce one lemma.

Assumption 1. Suppose that:
1. The central objective function F (w) is bounded from below,
i.e., Fmin = F (w∗) > −∞.
2. There exists ε > 0 such that E(∇ζk(w)) ≤ ||∇F (w)||, and
∇F (w)>E(∇ζk(w)) ≥ ε||∇F (w)||2 holds for all w.

Note that if ε = 1, then ∇ζk(w) is an unbiased estimator
of ∇F (w).

Lemma 1. If F (w) is µ-strongly convex, then with Assumption
1.1, we have:

2µ(F (wt)− F (w∗)) ≤ ||∇F (wt)||2. (14)

While the proof of Lemma 1 is supported by the literature
[38], [39], we also provide a detailed proof in Appendix A.

Theorem 1. Suppose that the central objective function F (w)
is L-smooth and µ-strongly convex. Assume the local functions
ζk are bounded dissimilar. Let Assumption 1 hold. Let η̄k ≤
ηtk < ηk = 2εN ′

LV 2n′
k

, then after T global updates on the server,
ASO-Fed converges to a global optimum w∗:

E(F (wT )− F (w∗)) ≤ (1− 2µγ′η̄k)T (F (w0)− F (w∗))
(15)

where γ′ = ε− LηkV
2

2 .

The detailed proof of Theorem 1 is provided in Appendix B.
Theorem 1 converges under the special case of convex central
loss and gives an error bound for the general form of model
aggregation.

Theorem 2. Suppose that the central objective function F (w)
is L-smooth and non-convex. Let Assumption 1 hold. Assume
the local functions ζk are bounded dissimilar. If it holds that
ηtk <

2ε−1
LV 2 ≤ max(rtkη̄) = η̄ for all t, then after T global

iterations, we have

T−1∑
t=0

ηtk
2
E(||∇F (wt)||2) ≤ F (w0)− F (w∗) (16)

We direct the reader to Appendix C for a detailed proof of
Theorem 2. The model convergence rate can be controlled with
a balance between the bounded gradient dissimilarity value V
and the learning rate ηtk.

V. EXPERIMENTAL SETUP

We perform extensive experiments on three real-world
datasets and one benchmark dataset (Fashion-MNIST).
A. Datasets
• FitRec Dataset3: User sport records generated on mobile

devices and uploaded to Endomondo, including multiple
sources of sequential sensor data such as heart rate, speed,
and GPS as well as the sport type (e.g., biking, hiking). Fol-
lowing [40], we re-sampled the data in 10-second intervals,
and further generated two derived sequences: derived dis-
tance and derived speed. We use data of randomly selected
30 users (clients) for heart rate and speed prediction, and
data of each user has features of one sport type.

• Air Quality Dataset4: Air quality data collected from
multiple weather sensor devices distributed in 9 locations of
Beijing with features such as thermometer and barometer.
Each area is modeled as a separate client and the observed
weather data is used to predict the measure of six air
pollutants (e.g., PM2.5).

• ExtraSensory Dataset5: Mobile device sensor data (e.g.,
high-frequency motion-reactive sensors, location services,
audio, watch compass) and watch sensor data (accelerator)
collected from 60 users; performing any of 51 activities
[41]. We use the provided 225-length feature vectors of time
and frequency domain variables generated for each instance.

3https://sites.google.com/eng.ucsd.edu/fitrec-project/home
4https://biendata.com/competition/kdd 2018/data/
5http://extrasensory.ucsd.edu/



TABLE IV.1
PREDICTION PERFORMANCE COMPARISON. BOLD NUMBERS ARE THE BEST PERFORMANCE, NUMBERS WITH UNDERLINES ARE THE SECOND BEST

VALUES. IMPROV.(1) SHOWS THE PERCENTAGE IMPROVEMENT OF ASO-FED OVER FEDAVG. IMPROV.(2) SHOWS THE PERCENTAGE IMPROVEMENT OF
ASO-FED OVER THE BEST BASELINE RESULTS.

Method
FitRec Air Quality ExtraSensory Fashion-MNIST

MAE ↓ SMAPE↓ MAE↓ SMAPE↓ MAE↓ SMAPE↓ F1↑ Precision↑ Recall↑ BA↑ Accuracy↑(Speed) (Speed) (HeartRate) (HeartRate)

FedAvg 13.61 0.78 13.72 0.78 44.30 0.44 0.66 0.87 0.55 0.77 0.87
FedProx 14.21 0.82 14.53 0.83 44.30 0.44 0.67 0.82 0.57 0.77 0.88
FedAsync 13.56 0.78 13.67 0.78 37.98 0.43 0.72 0.84 0.65 0.82 0.90
Local-S 12.76 0.75 13.27 0.76 36.72 0.56 0.65 0.72 0.61 0.79 0.89
Global 12.95 0.78 12.79 0.79 37.61 0.44 0.77 0.92 0.66 0.83 0.92

ASO-Fed(-D) 12.46 0.74 12.51 0.75 37.13 0.43 0.76 0.88 0.69 0.85 0.94
ASO-Fed(-F) 12.62 0.76 12.71 0.76 37.72 0.43 0.75 0.86 0.68 0.84 0.94
ASO-Fed 12.31 0.73 12.36 0.74 36.71 0.42 0.77 0.88 0.70 0.85 0.95

improv.(1) 9.55% 6.41% 9.91% 5.13% 17.13% 2.32% 16.66% 1.15% 27.27% 10.39% 9.19%
improv.(2) 3.52% 2.67% 3.36% 2.63% 0.03% 4.54% 0.00% -4.34% 6.06% 2.41% 3.26%

FedAvg FedProx FedAsync Global ASO-Fed(-F) ASO-Fed(-D) ASO-Fed

0 200 400 600 800 1000 1200
Running Time (seconds)

0.75

0.80

0.85

0.90

0.95

1.00

SM
AP

E

(a) FitRec (SMAPE ↓)

0 5000 10000 15000 20000 25000
Running Time (seconds)

0.42

0.44

0.46

0.48

0.50

0.52

SM
AP

E

(b) Air Quality (SMAPE ↓)

0 1000 2000 3000 4000 5000 6000
Running Time (seconds)

0.4

0.5

0.6

0.7

F1
 sc

or
e

(c) ExtraSensory (F1-score ↑)

0 2000 4000 6000 8000 10000
Running Time (seconds)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

(d) Fashion-MNIST (Accuracy ↑)

Fig. 3. Test set performance vs. running time for four datasets. Lower SMAPE value indicates better model performance. For the synchronized federated
frameworks, we plot results of FedAvg and FedProx at every 10 global iterations.

We model device of each user as a client and predict their
activities (e.g., walking, talking, running).

• Fashion-MNIST: This is a dataset of Zalando’s article
images—consisting of a training set of 60,000 examples
and a test set of 10,000 examples. Each example is a 28x28
grayscale image, associated with a label from 10 classes
(e.g., Dresses, Coat, Bag). Each class has the same number
of examples. We follow a non-IID setting as in FedAvg [1]
and divide the data into 20 parts according to their labels.
We first sort the data by category label, divide each category
into 4 different sizes {2000, 2750, 3250, 4000}, and assign
each of 20 parts 2 different sizes. We model each part as a
separate client and predict the target labels.

B. Comparative Methods
1) Baseline Methods

We compare the proposed ASO-Fed with the following
synchronous and asynchronous federated learning approaches,
single-client and global models.
• FedAvg [1]–[3]: the commonly used synchronous federated

learning approach proposed by McMahan et al. [1].
• FedProx [37]: synchronous federated learning framework

with a proximal term on the local objective function to
mitigate the data heterogeneity problem and to improve the
model stability compared to FedAvg.

• FedAsync [8]: asynchronous federated learning framework
using a weighted average to update the server model.

• Local-S: each client learns separate model with its own data,
and the model structure is the same as ASO-Fed.

• Global: combining the data of all clients and processed in
a batch setting on a single machine.

2) Ablation Studies
We also perform ablation studies to study the effect of

feature representation learning on server and local dynamic
learning step size:
• ASO-Fed(-D): the proposed ASO-Fed without dynamic

learning step size.
• ASO-Fed(-F): the proposed ASO-Fed without central fea-

ture representation learning.
C. Training Details

For each dataset, we split the each client’s data into 60%,
20%, 20% for training, validation, and testing, respectively. As
for each client’s training data, we start with a random portion
of the total training size, and increase by 0.05%− 0.1% each
iteration to simulate the arriving data. We set the fraction C
of FedAvg as 0.2, decay coefficient β as 0.001, η̄ = 0.001,
λ = 1.0 for FitRec and Air Quality datasets, λ = 0.8 for
ExtraSensory dataset, and λ = 0.5 for Fashion-MNIST. For
FedAsync model, we set γ = 0.1, ρ = 0.005 and α = 0.6. We



use a single layer LSTM followed by a fully connected layer
for the three real-world datasets and two CNN layers followed
by a max pooling layer for Fashion-MNIST. The local epoch
number of each client is set as 2. We design simple network
architectures for all datesets so that it can be easily handled
by mobile devices. All of the experiments are conducted with
two Intel E5-2660 v3 10-core CPU at 2.60GHz [42].
Simulation parameters. To simulate the stragglers and
dropouts situations, we set different network settings for our
experiments, a random offset parameter (10 ∼ 100 seconds)
was taken as an input from the client. This parameter rep-
resents the average delay related to the infrastructure of the
network for a client. We direct the reader to Section VI for
the detailed results.

VI. EXPERIMENTAL RESULTS

A. Predictive Performance Comparison
Table IV.1 reports the predictive performance comparing

ASO-Fed to the baseline approaches. In case of regression
problems, we report the average MAE and SMAPE values, for
ExtraSensory classification benchmark we report the average
F1, Precision, Recall and Balanced Accuracy (BA), and for
Fashion-MNIST we report the Accuracy. From Table IV.1,
we observe that ASO-Fed achieves the lowest MAE and
SMAPE values for FitRec and Air Quality datasets, and has
the overall best performance for ExtraSensory and Fashion-
MNIST datasets. Across the four datasets, ASO-Fed out-
performs the Global model (acquires all data at a single
server) by 2.39% ∼ 6.41%. FedAvg and FedProx do not
perform well on the highly unbalanced and non-IID datasets
(FitRec, ExtraSensory and Fashion-MNIST). In particular, for
the FitRec and Fashion-MNIST datasets, Local-S (the local
single client model) outperforms FedAvg and FedProx.

Figure 3 shows the prediction performance for the different
approaches as a function of running time. From Figure 3, we
notice large fluctuations on the performance of FedAvg and
FedProx during the whole training process on all four bench-
marks. This shows that synchronous federated frameworks do
not perform well on streaming data with skewed and non-IID
data distribution. FedAsync achieves better performance than
the two synchronous federated frameworks, but not as good
as ASO-Fed. ASO-Fed has steady improvements with running
time (and converges quickly).

TABLE VI.1
COMPUTATION TIME (IN MINUTES) TO REACH TARGET TEST

PERFORMANCE. THE NETWORK DELAY OF EACH CLIENT WAS SET TO BE A
RANDOM VALUE BETWEEN 10 ∼ 100 SECONDS.

Method FitRec Air Quality ExtraSensory FMNIST

FedAvg 20.42 460.02 104.86 160.72
FedProx 19.26 439.95 99.45 160.36
FedAsync 15.41 326.45 87.97 151.72

ASO-Fed(-D) 16.31 332.74 95.77 158.83
ASO-Fed(-F) 15.17 320.92 65.87 150.54
ASO-Fed 15.43 319.41 87.40 150.46
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Fig. 4. Performance comparison of federated approaches as dropout rate of
clients increases. ASO-Fed has better performance than the other federated
frameworks.
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Fig. 5. The performance of ASO-Fed with clients periodically dropping out.

Ablation Studies. To evaluate the performance of central
feature representation learning and local dynamic learning step
size, we perform ablation studies with two additional models:
ASO-Fed(-F) and ASO-Fed(-D). From Table IV.1 we notice
that ASO-Fed outperforms ASO-Fed(-F) by 1.06% ∼ 5.26%,
which shows the effectiveness of central feature learning
at generating a better feature representation across clients.
We show the visualizations of learned features for the three
real-world datasets in Section VI-E. ASO-Fed(-D) has close
prediction performance as ASO-Fed, but as shown in Figure
3, ASO-Fed(-D) needs a longer training time to converge than
ASO-Fed. This shows that local dynamic learning approach
works effectively at lowering the overall computation cost.

B. Evaluation of Time Efficiency
We report the running time of synchronous and asyn-

chronous FL approaches to reach target test performance in
Table VI.1. As seen from this table, FedAvg and FedProx
have the highest computation cost across all four benchmarks.
This is expected given that in synchronous protocol, the server
aggregation has to wait for the slow client nodes to finish
their computations. Among the comparison of asynchronous
update models, ASO-Fed is more time efficient than ASO-
Fed(-D). FedAsync is close in running time as ASO-Fed(-D).
From the empirical results we note that the dynamic learning
step size is a promising strategy and effective when there
are significant delays in the network. ASO-Fed is close to
ASO-Fed(-F) in terms of computational cost except for the
FitRec and ExtraSensory dataset. Because these two datasets
have more complex features and additional computation for
feature extraction requires more time, but ASO-Fed obtains
better prediction performance with a little sacrifice of time
efficiency.
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Fig. 6. Average performance comparison (SMAPE, F1, accuracy) on four datasets as training data increases.

C. Robustness to Stragglers and Dropouts

Stragglers are clients that lag in providing updates to the
server due to a variety of reasons: communication bandwidth,
computation load, and data variability. In this Section, we
investigate a common real-world scenario, when clients have
no response during the entire training process or are not
available in certain time windows. We refer to these non-
contributing clients as dropouts.

We set a certain portion of clients to be non-responsive.
These clients will not participate in the training process.
However, the reported results are evaluated on test data from
all clients. Figure 4 shows the performance of federated
learning approaches on Extrasensory classification and Air
Quality regression benchmarks with an increasing fraction of
clients being dropped from the learning process. As shown
in Figure 4, for the ExtraSensory dataset, we observe that
as the rate of dropout clients increases, the performance of
the FedAvg model also drops. The same trend is noticed
for FedProx. As for ASO-Fed, the prediction performance
is steady except for a slight decrease when the dropout rate
exceeds 40%. Even when 50% of clients are subject to dropout
during training, ASO-Fed can still achieve at least a 10%
improvement over synchronous FL models and FedAsync. For
the Air Quality dataset, ASO-Fed has lower SMAPE errors
than all other models as the dropout rate increases and the
performance of ASO-Fed is relatively stable. However, as
expected, if one of the nodes never sends updates to the central
server, the model does not generalize. This explains the poor
performance as the dropout rate increases.

We also explore the performance effect of nodes periodi-
cally dropping and not providing updates to the server. To the
best of our knowledge, no other methods for asynchronous
federated learning with local streaming data directly address
this issue. Therefore we do not draw comparisons to other
methods. At each global iteration, we randomly select a certain
fraction of clients as not participating in the training during
the current iteration. Figure 5 shows the convergence trend
for different rates of periodically dropping clients. We notice
that as the rate of periodically dropout clients increases, ASO-
Fed still converges well with slightly worse performance. This
shows that the performance of ASO-Fed is robust to relatively
high rates of periodical dropouts.

D. Results of Varying Training Samples
To evaluate the incremental online learning process more

explicitly, we display how the prediction performance changes
with an increasing number of training samples in Figure 6.
We perform experiments with different rates of all clients’
training data and depict the average performance on all clients.
From Figure 6, for all datasets, ASO-Fed achieves the best
performance with increasing rates of training data. Large fluc-
tuations are observed in the results of FedAvg and FedProx,
which exhibit an unstable model performance for synchronous
approaches as the local data sets increase. Compared with the
Global approach, asynchronous frameworks have more stable
performance as the amount of training data increases, while the
individual models learned by Local-S do not perform well. The
analysis shows that that ASO-Fed learns an effective model
with a smaller portion of training data. With increasing local
data, ASO-Fed still outperforms the other competitors.
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Fig. 7. Feature representation learned on the server of three real-world
datasets. Each column is the weights vector within 48 time steps over the
input series.

E. Feature Representation learning
In this section, we present the qualitative results of the pro-

posed feature representation learning on the server. In Figure 7,
we show the features learned from one client of three datasets
respectively. For the client in ExtraSensory, the highlighted



features are ‘Gyroscope’, ‘Accelerometer’ and ‘Location’, and
the corresponding labels are ‘walking’, ‘at home’. For the
client from Air Quality dataset, we observe that features
with high weights are ‘Wind Speed’ and ‘Temperature’. This
makes sense given that the target values are air pollutants
(e,g,. PM2.5, SO) and ‘Wind Speed’ decides whether these
pollutants can be dispersed. Air pollutants vary with seasons,
and a higher concentration of air pollutants appears in winter
time due to fuel consumption for heating in winter. Therefore
‘Temperature’ is also a strong indicator for air pollutants. For
the client from FitRec, the extracted features are ‘gender’,
‘sport type’ and ‘time’. Since the prediction targets are speed
and heart rate, these three features have strong correlations
with the targets. The above results show the effectiveness of
feature learning in ASO-Fed.

VII. CONCLUSIONS AND FUTURE WORK

We propose a novel asynchronous online federated learn-
ing approach to tackle the learning problems on distributed
edge devices. To the best of our knowledge, this is the first
attempt to solve asynchronous federated learning with local
streaming data. Compared to synchronized FL approaches
(FedAvg and FedProx), ASO-Fed is computationally efficient
since the central server does not need to wait for lagging
clients to perform aggregation. Compared with asynchronous
approach (FedAsync), the proposed approach achieves better
performance on all provided datasets, which indicates that
the proposed asynchronous update method can better handle
local streaming data. Time efficiency is compared on multiple
benchmarks and the results show that the proposed ASO-Fed is
faster than synchronized FL. The proposed ASO-Fed inherits
the idea of using asynchronous update scheme as [8], [9].
Likewise, it shares the same communication bottleneck prob-
lem pointed out in [11]. Nevertheless, it is still an open issue
to build communication efficient methods in asynchronous
federated learning frameworks. Besides, feature learning com-
ponent needs longer computation time when dealing with
datasets which have complex features. Thus, there is a trade
off between the prediction performance and computational
costs. In the future, we plan to develop communication effi-
cient federated learning methods with asynchronous updating
strategies.

APPENDIX

A. Proof of Lemma 1
Proof. F (w) is µ-strongly convex, we can get:

F (w′)−F (wt) ≥ 〈∇F (wt), w′−wt〉+ µ

2
||w′−wt||2, (17)

Let us define C(w′) such that:

C(w′) = F (wt) + 〈∇F (wt), w′−wt〉+ µ

2
||w′−wt||2, (18)

C(w′) is a quadratic function of w′, then it has minimal value
when∇C(w′) = ∇F (wt)+µ(w′−wt) = 0. Then the minimal
value of C(w′) is obtained when w′ = wt − ∇F (wt)

µ , which
is:

Cmin = F (wt)− ||∇F (wt)||2

2µ
, (19)

For F (w) is µ-strongly convex, we can complete the proof:

F (w∗) ≥ C(w∗) ≥ Cmin = F (wt)− ||∇F (wt)||2

2µ
, (20)

2µ(F (wt)− F (w∗)) ≤ ||∇F (wt)||2. (21)

B. Proof of Theorem 1
Proof. With F (w) is L-smooth, we have:

F (wt+1)− F (wt) ≤ 〈∇F (wt), wt+1 − wt〉+
L

2
||wt+1 − wt||2

= −∇F (wt)>ηtk
n′k
N ′
∇ζk(wt) +

L

2
||ηtk

n′k
N ′
∇ζk(wt)||2,

(22)
let m = ηtk

n′
k

N ′ > 0, with Assumption 1 and local Bounded
gradient dissimilarity, we can get:

E(F (wt+1))− F (wt)

≤ −m∇F (wt)>E(∇ζk(wt)) +
Lm2

2
E(||∇ζk(wt)||2)

≤ −mε||∇F (wt)||2 +
Lm2V 2

2
||∇F (wt)||2

= −m(ε− LmV 2

2
)||∇F (wt)||2,

(23)

We can easily prove that −m(ε − LmV 2

2 ) is monotonically
increasing while m > 0. Since n′k < N ′, thus m = ηtk

n′
k

N ′ <

ηtk. Then we have −m(ε− LmV 2

2 ) < −ηtk(ε− LηtkV
2

2 ).

With Lemma 1, and let γ = ε − LηtkV
2

2 , we can rewrite
Equation (23) as:

E(F (wt+1))− F (wt) ≤ −2µηtkγ(F (wt)− F (w∗)), (24)

Then we move F (wt) on left side to right and subtract F (w∗)
from both sides, and get:

E(F (wt+1))− F (w∗) ≤ (1− 2µηtkγ)(F (wt)− F (w∗)),
(25)

Since η̄k < ηtk, then by taking expectation of both sides, and
telescoping, we have:

E(F (wt+1)− F (w∗)) ≤ (1− 2µη̄kγ
′)(E(F (wt)− F (w∗)).

(26)
When t+1 = T , the above inequality becomes Equation (15).
Thus we complete the proof.

C. Proof of Theorem 2

Proof. With m < ηtk and γ = ε− LηtkV
2

2 , we replace m with
ηtk and take the full expectation of Equation (23), we have:

E(F (wt+1)) ≤ E(F (wt))− ηtkγE(||∇F (wt)||2), (27)

Then summing up (27) over global iteration T , we can get:

E(F (wt+1)) ≤ F (w0)−
T−1∑
t=0

ηtkγE(||∇F (wt)||2), (28)



From Assumption 1.1 we can get F (w∗) ≤ E(F (wt+1)), then
we have:

F (w∗) ≤ F (w0)−
T−1∑
t=0

ηtkγE(||∇F (wt)||2), (29)

If we set ηtk <
2ε−1
LV 2 ≤ max(rtkη̄) = η̄, we can get ηtk(ε −

LηtkV
2

2 ) >
ηtk
2 . Rearrange Equation (29) we can get:

T−1∑
t=0

ηtk
2
E(||∇F (wt)||2) ≤

T−1∑
t=0

ηtk(ε− LηtkV
2

2
)E(||∇F (wt)||2)

≤ F (w0)− F (w∗).
(30)

Then we get Equation (16) and complete the proof.
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