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Abstract—Graph neural networks (GNNs) have been widely
used for recommender systems over knowledge graphs. An
important issue of GNN-based recommender systems is individual
user fairness in recommendations (i.e., similar users should be
treated similarly by the systems). In this paper, we make the
following contributions to enable recommender systems to be
equipped with individual user fairness. First, we define new
similarity metrics for individual fairness, where these metrics
take knowledge graphs into consideration by incorporating
both first-order proximity in direct user-item interactions and
second-order proximity in knowledge graphs. Second, we design a
novel graph neural network (GNN) named S K I P H O P  for fair
recommendations over knowledge graphs. By passing latent
representations from both first-order and second-order neighbors
at every message passing step, S K I P H O P  learns user embeddings
that capture their latent interests present in the second-order
networks. Furthermore, to realize individual user fairness, we
add fairness as a regularization to the loss function of recommen-
dation models. Finally, through experiments on two real-world
datasets, we demonstrate the effectiveness of S K I P H O P  in terms
of fairness and recommendation accuracy.

Index Terms—Algorithmic fairness, Recommender systems,
Second-order proximity embedding, Graph neural networks

I . INTRODUC T I ON

An important issue in recommender systems is that rec-
ommendations can be discriminatory against particular groups
as well as individual users/items [1], [2]. To address these
vital fairness issues, quite a few fairness-aware recommender
systems have been designed recently [3], [4], [5]. Despite their
efforts on developing new fairness notions and algorithms,
most of these previous efforts mainly focus on group fair-
ness, i.e., different user groups should be treated equally by
recommender systems [3], [4]. However, it has been shown
that group fairness is inadequate, as it might be unfair to
some individuals within a group [6]. This introduces the
complementary notion of individual fairness. At a high level,
the state-of-the-art notion of individual fairness [6] requires
that similar individuals should be treated similarly, where
similarity is measured by a task-specific metric. Individual
fairness has been studied in knowledge graph (KG) based
recommender systems [5]. However, the existing work does
not quantify user similarity based on historical interactions.
Instead, they only consider users’ similarities formulated on
the paths connecting user-item pairs for the top-K items. In
this paper, we design a new efficient user similarity metric and
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create an individual fairness-aware algorithm for KG-based
recommender systems.

There are several challenges in solving individual unfair-
ness on Knowledge Graph (KG)-based recommendation ap-
proaches. First, most of them (e.g., KGAT  [7]) utilize multi-
layer message passing to collect high-order proximity infor-
mation in user-item interactions or knowledge graphs when
learning embeddings for recommendations. However, multi-
layer message passing methods can lose important information
and thus limit the representational capacity of the model [8].
Second, although the individual fairness notion [6] is highly
appealing, it critically depends on the extent to which the simi-
larity metrics faithfully represent the needs of specific task set-
tings. In the setting of recommender systems, while individual
fairness requires that “similar” users should receive “similar”
recommendations, how to define the similarity metrics of both
users and recommendations remains unclear. Therefore, the
most significant barrier to implementing individual fairness in
recommender systems, is the construction of similarity metrics
for users and recommendations respectively. In particular,
since users who have different historical interactions might
still have similar interests if the interacted items of these users
share the same features, similarity metrics for both users and
recommendations should facilitate the information beyond the
first-order proximity.

Our contributions. To address these three challenges,
we design a new KG-based recommendation algorithm that
provides individual fairness to users. We summarize our main
contributions as follows. First, we define new similarity met-
rics for users and items respectively. Based on both simi-
larity metrics, we define individual fairness which requires
that similar users (in both historical item interactions and
latent interests) should be recommended with items of similar
embeddings. Second, we design a novel graph neural network
named SK I PHOP that explicitly models both first-order (i.e.,
user-item interactions) and second-order network structures
(i.e., user latent interests) of user nodes in one-layer message
passing. The goal of considering second-order proximity is to
capture users’ latent features in a knowledge graph, so that
users who have not only similar historical item interactions
but also similar latent interests (e.g., preferences of movie
genres) have similar embeddings. Third, we conduct extensive
experiments to demonstrate the effectiveness of SK I PHOP
compared with three state-of-the-art recommender systems.
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I I . R E L AT E D  WO R K

Individual fairness in machine learning. The existing
fairness definitions and measurements can be grouped into two
categories: group fairness which is concerned with protected
groups (such as gender groups) and requires that some statistic
of interest be approximately equalized across groups [9], [10],
[11], and individual fairness [6] which prevents discrimination
against individuals. In this work, we mainly focus on indi-
vidual fairness. One challenge in defining individual fairness
is to pick the appropriate similarity metrics. The similarity
metrics should be context-dependent [6], [12]. Recognizing
the challenge of defining similarity metrics, we are inspired
by InFoRm proposed by Kang et al. [13], and choose to use
the Jaccard similarity and the JS divergence for measuring user
similarity and cosine distance for measuring recommendation
similarity for our purposes.

User-side fairness in recommender systems. Group fair-
ness in recommender systems have received much attention
from the research community recently [5], [14]. The studies
of individual fairness in recommender systems remain rela-
tively limited. Biega et al. [15] consider item-side individual
fairness. Their fairness notion primarily concerns the level of
attention that an individual item receives in proportion to its
relevance (ranked position). There are several works on user-
side individual fairness, [5], [16], [17], [18]. But, they either
utilize Envy-free fairness or counterfactual fairness. The most
similar work to us is [5] which quantifies the disparity of
users by measuring the average of the pairwise difference in
patterns of paths between users and the top-K recommended
items. This is fundamentally different from our measurement
of individual fairness.

I I I . P RO B L E M DEFIN I T I ON

A  natural adoption of individual fairness to recommender
systems is to require that any two similar users must receive
similar recommendations. We first define user similarity and
recommendation similarity. Then we formally define individ-
ual fairness in recommendations.
User similarity. User similarity can be measured in different
ways under various contexts. In this paper, we consider two
orders of graph structures that would affect the similarity
between pairs of users. Given two users u and v, we calculate
the following two types of similarity: (1) Direct interaction
similarity (first-order proximity) that considers the similarity
of nodes that are directly connected to u and v such as
historical user-item interactions; (2) Knowledge graph en-
hanced similarity (second-order proximity) that measures
the similarity of the nodes that are at distance two to u and v.
Second-order proximity aims to capture the similarity of latent
interests of users, which is the side information provided by
a knowledge graph. In this paper, we adopt Jaccard similarity
to measure the direct interaction similarity: J u ; v  =  j H u \ H v j ;
where H u  is the set of items that user u has directly connected
to in the given graph G. We choose Jaccard given its simplicity,
but other similarity metrics (e.g., Dice coefficient and overlap
coefficient) can also be applied.

For the second-order proximity, we measure the distribution
distance of latent user features. Specifically, for any two users,
we first calculate the distributions of specific auxiliary features
of these users in the knowledge graph. We utilize Jensen-
Shannon divergence (JS divergence) [19] to calculate the
distance between these two distributions. Formally, given two
users u and v, and a hidden feature a (e.g., genres or creators)
in the second-order proximity of u and v, the distributional
similarity of u and v on a feature a is computed as follows:

D u ; v  =  1      
 

2
KL(Ga j jGa )  +  

2
KL(Ga jjGa ); (1)

where KL(P jjQ) denotes the Kullback–Leibler (KL)  diver-
gence between two distributions P  and Q, and G a  denotes
the distribution of feature a of items that user u has explicitly
interacted with. Since JS divergence reflects the distance
between two distributions, we convert it to the similarity of
two distributions by using (1-JS).

Based on the 1st-order and 2nd-order proximity, we measure
the similarity between any two users u and v as follows:

S u ; v  =  J u ; v  +  (1      )Du ; v ; (2)

where J u ; v  and D a follow Jaccard similarity and Eq. (1)
respectively. For simplicity, in this paper, we only consider
one feature (e.g. a =  genre) when calculating user similarity.
However, Eq. (2) can be easily extended to multiple features
by averaging D u ; v  for different a.
Recommendation similarity. Given two users u and v, and
their recommendations R u  and R v  which are two ranked lists
of items, we define recommendation dissimilarity (distance)
between two lists of items. For any two items p; q, we measure
their dissimilarity as the distance between their embeddings hp
and hq . Formally, given two users u and v, and their top-k
recommendations R u  and Rv ,  the dissimilarity between R u
and R v  is measured as follows:

u;v  =      2 

X  X  
d(hp; hq ); (3)

p 2 R u  q 2 R v

where hp and hp are the embeddings of items p and q,
and d() is a function that measures the distance between the
embeddings hp     and hq     such as cosine distance. We choose
cosine distance over Euclidean distance and gener-alized
Minkowski distance because of its flexibility and its bounded
value domain. Equation (3) evaluates the average pairwise
item distance for all items in two recommendation lists.
Intuitively, the recommendations that contain similar items
will have a low distance. It is worth mentioning that we do not
consider using ranked similarity methods due to the
computational complexity since we use it as a regularization
term in the loss function.
Individual fairness in recommender systems. Based on the
definition of user similarity and recommendation dissimilarity,
we define unfairness score (UF) formally. Given a set of users
U, let R u  be the recommendations for user u 2  U, the UF
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Fig. 1: The framework of SK I PHOP GNN. Orange and purple
boxes denote first-order and second-order neighborhood of
user u respectively.

score of all the recommendations made by a recommender
system, f R  j8u 2  Ug, is computed as:

UF =  log( 
X  

S u ; v   u ; v )  if S u ; v  >  ; (4)
8 u ; v 2 U

where  is the threshold for selecting similar users. Inspired by
InFoRm [13], we set  =  mean(s) + std(S ) which denotes a
value above average. Unlike [5] that measures individual
fairness as the utility disparity between user pairs, our UF
score takes both the distance of item embeddings and user
similarity into consideration. Our goal is to design a KG-
based recommender system that minimizes the UF score while
preserving the accuracy of recommendations.

I V. ME THODO L OG Y

One of the underlying reasons that the conventional RGCN
based recommender systems fail to provide individual fairness
is that they do not explicitly take second-order neighborhood
similarity into consideration, and thus their recommendations
do not respect such user similarity. To mitigate this problem,
we design a new GNN model named SK I PHOP that provides
individual fairness to recommendations. Figure 1 illustrates
the overview of SKIPHOP. It consists of three steps of each
iteration: Step 1: Generate RGCN embeddings: The embed-
ding vectors of the nodes in a given knowledge graph are
generated by a conventional RGCN model. Step 2: Generate
SK I PHOP embeddings: With the RGCN embeddings as the
input, SkipHop GNN generates embeddings of user nodes
that capture users’ latent interests by utilizing their second-
order proximity in the given KG; Step 3: Fairness-aware
recommendations: The model learns recommendations from
SkipHop embeddings with individual fairness equipped as a
regularization term to the loss function. Step 1 simply uti-
lizes the existing RGCN models to generate the embeddings.
Therefore, we will present the details of Steps 2 & 3.

A. Learning SK I PHOP Embeddings

When generating node embeddings, SK I PHOP considers
second-order message passing, where the nodes receive latent
representations from their immediate (first-order) neighbors as
well as second-order neighbors at every message passing step.
Specifically, SK I PHOP takes the embeddings of user nodes
generated by the RGCN model as input, and incorporates these
embedding vectors with second-order neighborhoods directly.
We note that, since we only focus on user-side fairness in this

paper, we only apply SK I PHOP to generate embeddings of
user nodes. We still use RGCN embeddings for item nodes.

For each user node nv     2  V, we randomly sample the
second-order neighbors of nv in G, and connect these nodes
with the node nv directly, generating a second-order graph G2. It
is worth noting that SkipHop can be easily generalized to the
neighborhood of a higher order by generating the knowledge
graph G k with k >  2.

In this paper, we consider graph attention network (GAT)
[20] to capture edge-wise contributions when learning node
embeddings. Then the propagation model of SkipHop that
calculates the forward-pass update is formulated as below:

( l  1)     ( l  1)

h ( l + 1 )  =  u ; i W ( r ) ; (5)
i 2 N u                                      r 2 R  p 2 N i

where N u  denotes the second-order neighbors of node u, N r  is
the set of first-order neighbors of node i  for relation r, W
and W r  are training parameters, and u ; i  is the attention weight
that shows the importance of the node u for node i.
Specifically, we apply two layers of RGCN to obtain hp and
pass it to Eq. 5 to calculate hu .

B. Fairness-aware Recommendations
After the embeddings of user nodes are calculated, a

straightforward approach is to generate user-item preference
scores from user and item embeddings. In this paper, we use
inner product as the scoring function to compute the preference
scores. Specifically, the preference score of user u to item
p is computed as ŷu;p =  h > hp ,  where h u  and hp are the
embeddings of u and p respectively. We follow C K E  [21]
and KGAT  [7] and utilize Bayesian Personalized Ranking
(BPR) [22] for the loss function of recommendation.
Fairness regularization (FR). Since the recommendations are
not available during the training process, we design an approx-
imation of unfairness regularization by randomly sampling k
items that each user has interacted with. We use uS  to denote
the k items sampled for the given user u. Then we define the
fairness regularization as follows:

L F R  =
1

2      
 
X  

S u ; v   
 

2     
 
X X  

d(I u ; I v );  (6)
8 u ; v 2 U 8 p 2 u S  8 q 2 v S

where I u  is a sampled item that user u has interacted with.
S ( )  and d() functions follow Eqs. 2 and 3 respectively. We set
S u ; v  =  0 when S u ; v  <   as Eq. 4 given that we only focus on
similar users [13]. By adding the unfairness regularization, we
have the following loss function to minimize:L =  L B P R  +  L F R ;
where  is the hyperparameter that controls the trade-off
between fairness and recommendation accuracy.

V. E X P E R I M E N T S

A. Experimental Setup
All algorithms are implemented in Python and executed

on NVIDIA TITAN V  GPU with 12 GB memory. We will
release source code upon publication. Datasets. We use two
datasets, namely Movie dataset and Music dataset, that are
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TA B L E  I: Performance evaluation on Movie/Music datasets. Preci-
sion@20 (P@20), recall@20 (R@20), and NDCG@20 (N@20) are
reported. UF is the unfairness score with  =  0:75 (i.e., UF@0.75).
Trade-off (TO) between fairness and accuracy is included. The best
value for each metric (with or without fairness regularization) is
highlighted in bold.

P@20 (%)        R@20 (%) N@20 (%) UF@0.75 TO (%)

Without fairness regularization

NFM [23] 26.6/23.5 21.8/10.5 34.2/26.9 12.74/10.16 3.7/3.7
C K E  [21] 27.1/22.4 22.4/10.1 34.9/25.4 13.14/11.24 3.9/4.5
K G AT  [7] 20.9/13.5           16.7/5.7 25.4/14.3 13.06/11.81 5.2/8.4
S K I P H O P 27.4/22.6 22.0/10.3 34.6/25.0          11.00/9.72 3.1/3.7

With fairness regularization

NFM [23] 26.1/23.9 22.1/10.7 33.6/27.4 13.20/10.40 3.9/3.9
C K E  [21] 27.0/21.9           22.6/9.9 34.7/25.0 12.29/10.32 3.5/3.9
K G AT  [7] 19.0/11.6           15.2/4.7 22.5/12.0 12.75/11.71 5.5/9.8
S K I P H O P 27.3/22.5 22.0/10.3 34.6/24.7           7.34/7.53 2.1/2.9

popularly used in the literature [4], [5]. Movie dataset contains
6,040 users, 3,706 movies with 1 million interactions collected
from MovieLens-1M. Its knowledge graph contains genre and
director information of movies. We use a benchmark music
dataset named KKbox. This music dataset contains 4,000
users, 43,268 music items, and 1,735,148 interactions. Its
knowledge graph contains genre and composer information
of music. Metrics. We adopt three commonly used metrics
for evaluation accuracy of recommendations: Precision@K,
Recall@K, and NDCG@K. For fairness evaluation, we use
Unfairness Score (UF) (Eq. 4) as the evaluation metric. We
use UF@ to denote the value of UF under particular  value
(Eq. 2). Baselines. We consider the following algorithms as
baselines: (1) Neural Factorization Machine (NFM) [23] that
considers second-order feature interactions; (2) C K E  [21] that
considers collaborative knowledge base embedding; (3)
KGAT [7] that uses knowledge graph attention networks. We
make NFM, CKE,  and KGAT fairness-aware by equipping the
same fairness regularization of SK I PHOP with the loss function
of these methods. Parameter setting. For both datasets, we
adopt the same idea as previous work [7] and randomly choose
70% items for each user to be included in the training set, 10%
items for validation set, and the remaining 20% items for the
test set. We optimize all the models with Adam optimizer with
batch size 256, learning rate 0:001, and weight decay 1e      5.
We fix the embedding vector dimension as 64. We choose
=  0:75 in the loss function and  =  0:75 in Eq. 2 by a grid search
in  =  f1; 0:75; 0:5; 0:25g and  =  f1; 0:75; 0:5; 0:25g on the
validation set.

B. Performance of SK I PHOP

We evaluate the quality of the embeddings generated by
SKIPHOP, and compare with NFM, C K E  and KGAT  in
both accuracy (Precision@k, recall@k, NDCG@k) and the
unfairness score of recommendations. The results are shown
in Table I  (top four rows). We denote SK I PHOP that does
not add the fairness regularization as SKIPHOP-F. We have
the following observations. First, on both datasets, SK I PHO P-F
has the lowest unfairness score as well as the best trade-

off between fairness and accuracy among the four methods.
Indeed, SK I PHOP-F can achieve as large as 12% reduction in
the unfairness score. This demonstrates that by incorporating
the second-order proximity, SK I PHO P-F enhances individual
fairness effectively. Second, SK I PHOP-F achieves competitive
performance compared with the baseline methods. In particu-
lar, SK I PHOP-F always outperforms C K E  and KGAT  on both
datasets. On the other hand, the recommendation accuracy of
SK I PHO P-F is comparable with NFM on the Music dataset
and outperforms NFM on the Movie dataset. Note that the
unfairness score of SK I PHO P-F is much smaller than NFM.
Trade-off between Fairness and Accuracy We report pre-
cision@20, recall@20, NDCG@20, and the unfairness score
(UG) in Table I  (bottom four rows). The results show that the
fairness regularization can effectively improve fairness of C K E
and KGAT; their unfairness scores are improved by 6:5% and
2:3% respectively. However, the fairness regularization fails to
improve the fairness of NFM. On the other hand, the accuracy
of those approaches decreases. On the contrary, the accuracy
of SK I PHOP maintains stable, while the unfairness score is
further improved significantly (33:3% decrease on the Movie
dataset and 22:5% decrease on the Music dataset). This makes
the accuracy of SK I PHOP closer to the best performance of
CKE,  NFM, and KGAT, but with improved fairness. Next, we
measure the trade-off between fairness and recommendation
accuracy. We consider NDCG@20 as the accuracy metric and
define the following metric to measure the trade-off (TO):
TO =  U F . Intuitively, smaller TO values indicate better
trade-off between fairness and accuracy. To make the values
of NDCG@20 and UF comparable, we first project UF values
into the range of [0, 1] by dividing them by 1; 000. The
accuracy metric can be changed to other metrics such as
precision@20 and recall@20. We show the trade-off results in
Table I  (“TO" column). We observe that SK I PHOP always has
the best trade-off among all the methods. This demonstrates
the effectiveness of SK IPHOP.
User Interests Captured by S K I P H O P To evaluate if
SK I PHOP captures latent user interests, we study the genre
distribution of recommended items by SK I PHOP and the
baselines. Since individual fairness is concerned with similar
users, we measure the similarity of genre distributions of
recommended items for similar user pairs. We consider top-k
(k =  f10; 20; 30; 40; 50; 75; 100g) most similar user pairs,
where user similarity is measured as Jaccard similarity of
historical interactions. For each user pair <u, v>, we utilize
Jensen-Shannon divergence (JSD) to measure the genre distri-
bution distance of their recommendations R u  and Rv .  Finally,
we calculate the average of JSD for all k similar user pairs.

Figure 2a presents the result of average JSD distance of
genre distribution by SKIPHOP, historical items, and three
baseline methods on Movie dataset. It shows that the items
recommended by SK I PHOP have more similar genre distri-
bution than three baselines. Specifically, the average JSD by
SK I PHOP never exceeds 0.1, even when as many as top-100
similar user pairs are considered. This demonstrates that the
recommendations by SK I PHOP better capture the true
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Fig. 2: (a): Comparison of genre distributions of items recommended
by SK I PHO P and baselines for the top-k similar pairs of users on
the Movie dataset. (b): Ablation study for three settings: SK I PHOP,
SK I PHOP-F, and SK I PHOP-F-S on the Movie dataset. Left y-axis is
for P@20, R@20, N@20; Right y-axis is for UF@0.75.

distribution of users’ historical interactions than the baselines.
Ablation Study We consider three settings: SKIPHOP,
SK I PHOP without fairness regularization (SKIPHOP-F), and
SK I PHOP without both fairness constraint and second-order
connections (SKIPHOP-F-S). The results on the Movie dataset
are shown in Figure 2b. First, SK I PHOP and SK I PHO P-F out-
perform SK I PHOP-F-S in terms of both accuracy and fairness.
It demonstrates that the second-order connections are useful to
achieve better accuracy performance. Second, without the
fairness regularization on SKIPHOP, the unfairness score of
recommendations increased, which indicates the effectiveness
of fairness regularization in bias mitigation. We conclude that
SK I PHOP is effective to address the trade-off between fairness
and recommendation accuracy.

V I . CO N C L U S I O N AND DI SCU SS IO N

In this work, we study the problem of enforcing recom-
mender systems on knowledge graphs with individual user
fairness. First, we formally define individual fairness, which
requires that similar users should receive similar recommenda-
tions. As part of this fairness notion, we define the similarity
metrics that incorporate both first-order and second-order
proximity. Second, we design a novel graph neural network
named SK I PHOP that models the users’ latent interests from
their second-order proximity. Our experimental results demon-
strate the effectiveness of SK I PHOP in terms of fairness and
recommendation accuracy compared with the state-of-the-art
recommender systems. This work can be extended in several
exciting directions for future work. We will investigate how to
extend SK I PHOP to group fairness notions. We will study the
impact of integrating higher-order proximity with SK I PHOP in
terms of both fairness and recommendation accuracy.
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