

Tutorial: Explainable AI for Societal Event Predictions: Foundations, Methods, and Applications

Songgaojun Deng, Yue Ning, and Huzefa Rangwala

Wednesday, February 3, 2021 8:30 am – 10:00 am (PST)

Roadmap

- Introduction and motivation
- Part 1: Precursor Identification for Interpretable Event Forecasting
- Part 2: Event Graphs for Interpretable Event Forecasting
- Conclusion and Future Directions

What are societal events?

New York City Ne

Epidemics outbreak during 2018-2019 in southern region



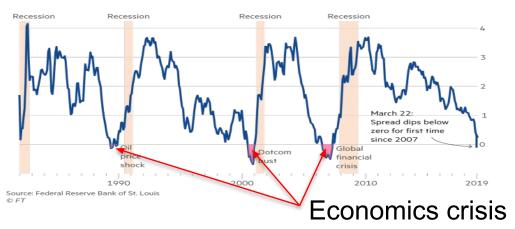
influenza

ILI Activity Level

What are societal events?

Protests

Civil unrest events on Mar 17, 2013 in Brazil



Earthquake events

Societal Events

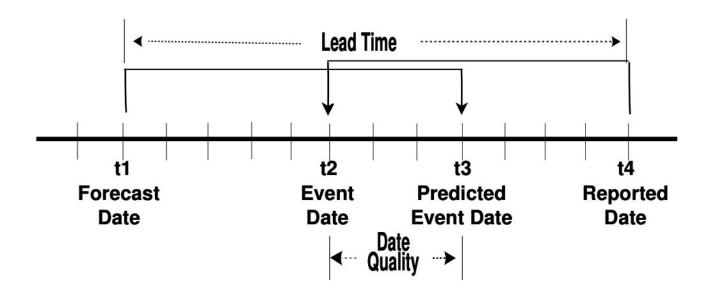
Riots Crisis
Terrorism Strikesevents
Epidemics SnowEconomic storm
Traffic Congestions Pandemics
EarthquakeBoycotts Floods
CrimesProtests

Societal Event Predictions

- The task is to predict the occurrence of events in the future with significant social impact.
- Underlying mechanism of societal events
 - Complex, dynamic, sparse
 - Hard to comprehensively model with limited data
 - Largely unknown

Build the forecaster driven by large historical data

Lead Time



Examples of Social Indicators

Forest Fire Detection and monitoring in Nepal

Global event encoding system

Social Media Landscape 2017

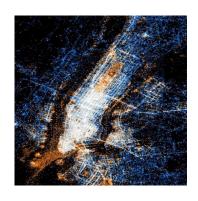
Characteristics of Social Indicators

Ubiquitous

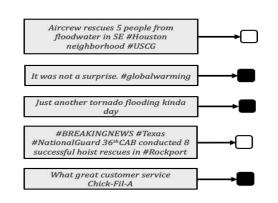
- Every user/agent of social media/web/forum is a social sensor (citizen sensor)
- They are everywhere observing the world all the time.

Timeliness

- 6,000 tweets every second.
- 500 million tweets per day.
- Usually beats the earliest official reports.
- Indicative and predictive signals



TARGET: A New Crisis

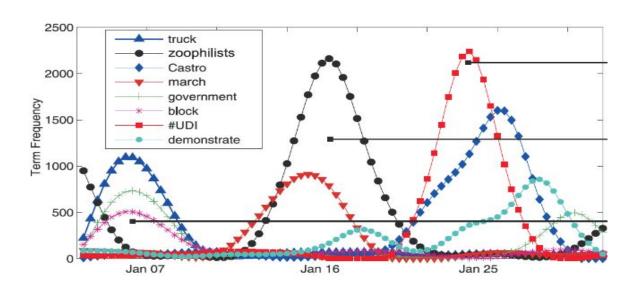


Explainable Event Predictions

- Social indicators can be general signals, features, and even distributions in open source data sets
- Precursor discovery refers to identifying specific examples or instances in the historical data given a prediction
- Explainable predictive models uncover significant features, graphs, documents for explaining prediction results.

1. Dynamics

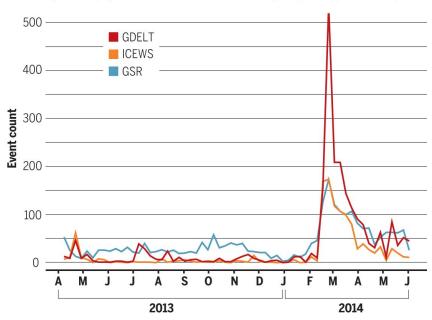
new #hashtags, abbreviations, new words



2. Multi-source unstructured data

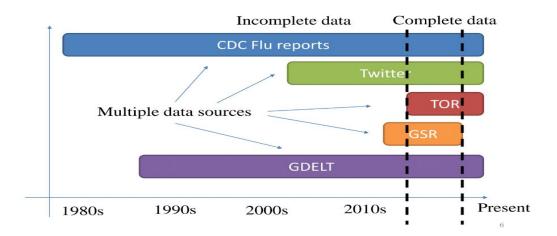
Weekly count of protest events in Venezuela

Event data from GDELT, Global Data on Events Language and Tone; ICEWS, International Crisis Early Warning System; and GSR, Gold Standard Report (see suppl. materials).



3. Data incompleteness

Reddits enable geo-info this year



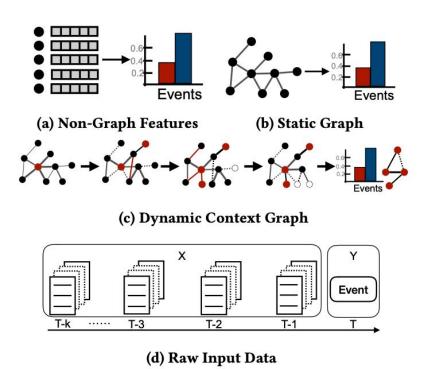
West Bengal Police 📀

4. Noise in Data typos, chit-chat, misinformation

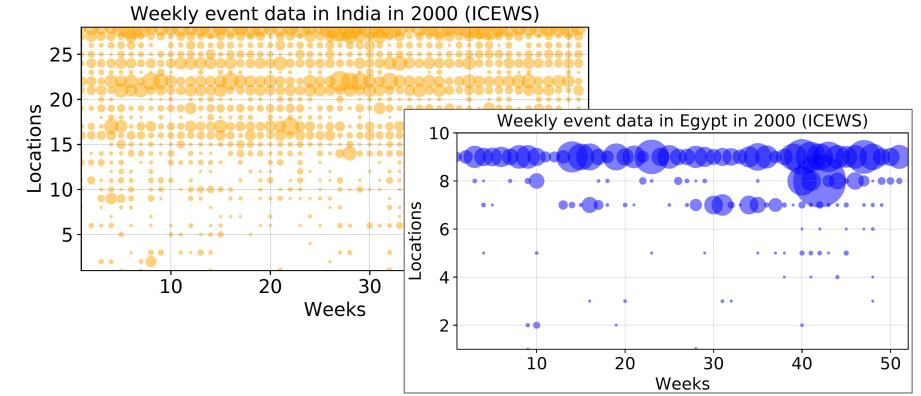


5. Heterogeneous data

Need to specify forms of event explanations



6. Sparsity in spatio-temporal features



Other challenges

- Dependencies among events, e.g., spatial dependencies
- Lack of labeled data, cannot afford to label massive data
- Model interpretability societal events are influential
- Lack mechanism models

Comparisons with Event Modeling Tasks

Event detection

- Historical or Ongoing events
- Discover anomaly
- Model types
 - Unsupervised learning
- Relevant techniques
 - Anomaly detection
 - Outlier detection
 - Change detection
 - Motif discovery

Event forecasting

- Future events
- Discover the mapping
- Model types
 - Supervised learning
 - Self-supervised learning
 - Semi-supervised learning
- Relevant techniques
 - Autoregressive
 - Markov chain
 - Classification

Explainable discovery

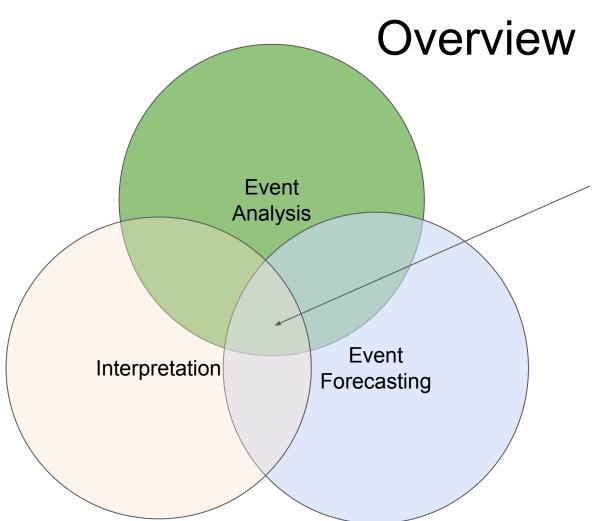
- Future events
- Discover the mapping
- Model types
 - Supervised learning
 - Self-supervised learning
 - Semi-supervised learning
- Relevant techniques
 - Multi-instance learning
 - Multi-task learning
 - Classification
 - Deep learning
 - Causal inference

Comparisons with Spatial Prediction

Prediction v.s. Forecasting:

- "Forecasting": Must be variable in the future.
- "Prediction": Not necessarily variable in the future.
- Spatial Prediction
 - Dependent variable
 - No need be in the future
 - Usually continuous values –"index"
 - Must have spatial dimension

- Event Forecasting
 - Dependent variable
 - Must be in the future
 - Usually discrete values "event"
 - No need be in spatial dimension



Interpretable Event Forecasting Models

Part 1: Precursor Identification in

Spatio-Temporal Event Forecasting

Opposition Leader, López, called upon students to peacefully protest.

major protests
began with student
marches led by
opposition leaders
in 38 cities

Feb. 1 Feb. 12

López, alongside María Corina Machado launched a campaign to remove Maduro from office.

Opposition Leader, López, called upon students to peacefully protest.

major protests
began with student
marches led by
opposition leaders
in 38 cities

Jan. 23 Feb. 1 Feb. 12

Murder of former Miss Venezuela, Monica Spear.

Former presidential candidate
Henrique Capriles shook the hand
of President Maduro

Attempted rape of a young student on a university campus in San Cristóbal

The harsh police response to their initial protest

López, alongside María Corina Machado launched a campaign to remove Maduro from office.

Opposition Leader, López, called upon students to peacefully protest.

major protests
began with student
marches led by
opposition leaders
in 38 cities

If social scientists need to do this a lot

The Big Picture

¡Multi-Task Learning

Relationships between locations;

Spatio-temporal event progression;

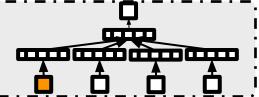
Multi-Instance Learning

Label propagation from bag to individual;

!Temporal constraints between bags;

Representation Learning

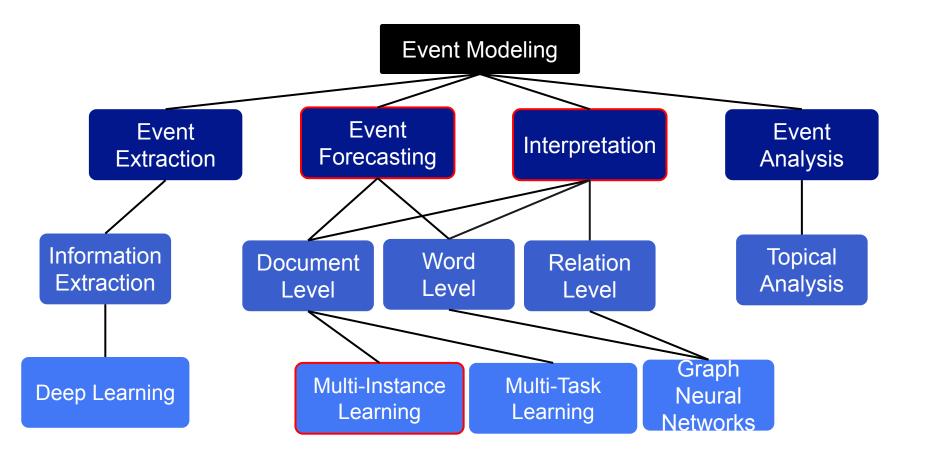
Embeddings; word2vec; doc2vec; etc.



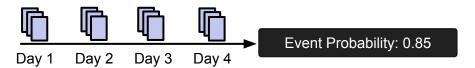
Social Indicators

News, blogs, social media, images, videos, time series, etc.

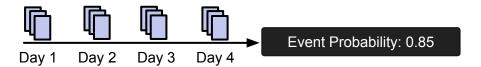
 $(X_1, X_2, ..., X_t) \rightarrow Y_{t+1}$



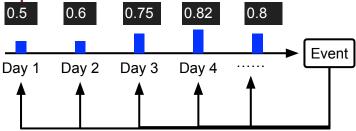
- What is Precursor Discovery in Event Forecasting?
 - Forecast the occurrence of event of interest using historical data



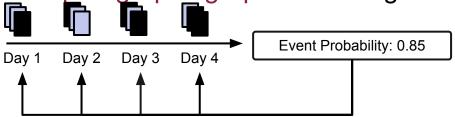
- What is Precursor Discovery in Event Forecasting?
 - Forecast the occurrence of event of interest using historical data



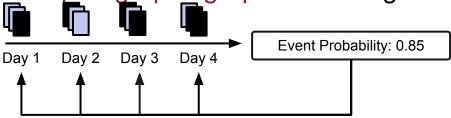
- Predict days of importance before an event



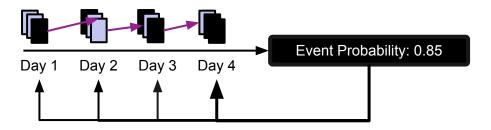
- What is Precursor Discovery in Event Forecasting?
 - Identify key docs/paragraphs/graphs from large-scale input



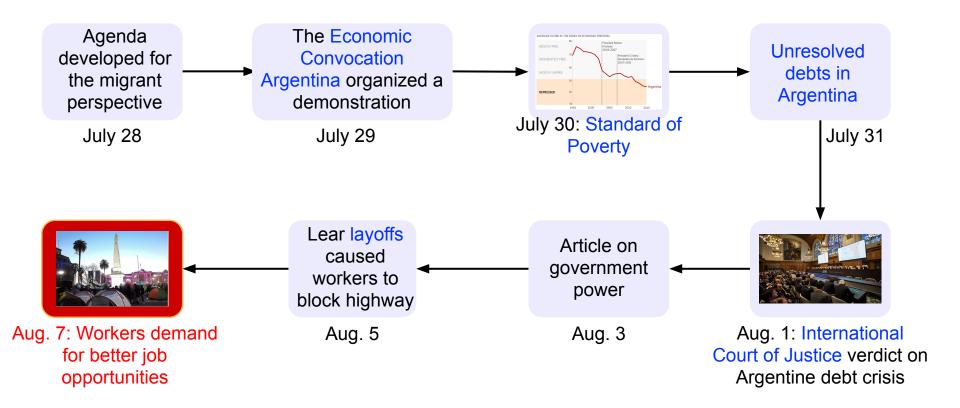
- What is Precursor Discovery in Event Forecasting?
 - Identify key docs/paragraphs/graphs from large-scale input



- Formalize precursor storylines



Precursor Storyline



Existing Methods

- Existing approaches for event forecasting (when), examples:
 - Lasso [Zhao et al, TKDE17];
 - Fusion Method [Ramakrishnan et al, KDD14];
 - Multi-Task Learning [Zhao et al, KDD15];
 - Generative model [Zhao et al, SDM15];
- **→** Limitations:
 - Focus on prediction performance, lack of explanation
 - Unable to provide structured evidence

Existing Methods

- Existing approaches for identifying precursors (why), examples:
 - Storytelling [Hossain et al, KDD12];
 - Combinational mixed Poisson process [Rong et al, KDD15];
- **→** Limitations:
 - Dependent on observed event sequence (time series, sequential)
 - Lack of predictive value

Modeling Precursors for Event Forecasting via Nested Multi-Instance Learning [Ning et al. KDD16]

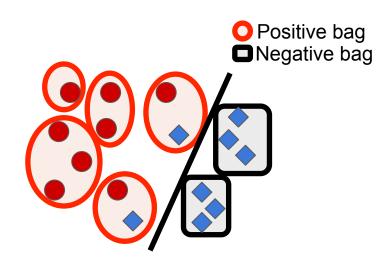
- The proposed method: a nested Multi-Instance Learning framework
 - Solve the above problems together (when & why)
 - Significantly reduce time of manual inspection of specialists/scientists
 - Generate storylines of indicators while predicting events of interest

Multi-Instance Learning

Supervised Learning

Positive
Negative

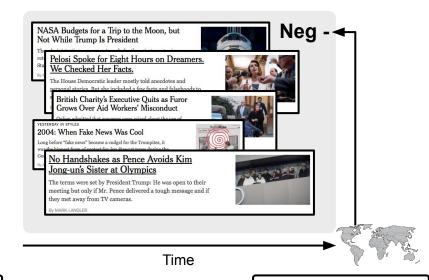
Multi-Instance Learning (MIL)



- Incomplete knowledge about labels in training data
- Propagate bag level supervision to individuals

Event Forecasting in Multi-Instance Learning

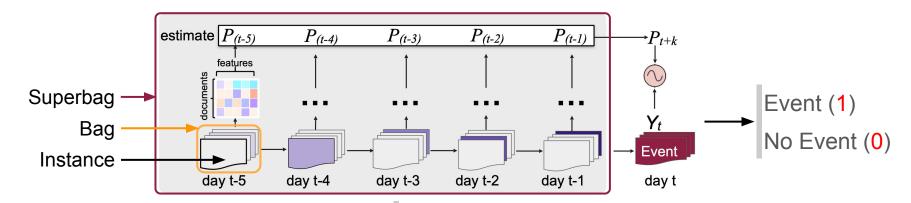
Event: Student Protest Location: San Paulo Time: 2014-05-01



Event: None Location: San Paulo Time: 2014-05-10

System Overview

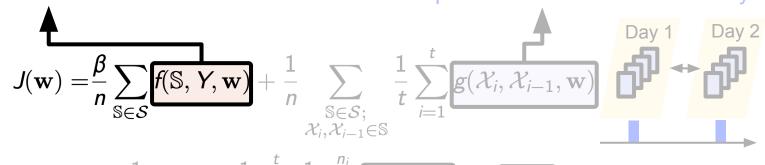
Target Prediction Label, Y



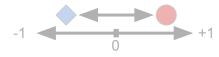
Nested Multiple Instance Learning

- Each news article: Instance
- A group of news articles for a day: Bag
- A sequential collection of bags: Super-Bag
- Label is only associated at the Super-Bag Level
- Probabilistic Estimate for every News Article (Instance) and Day (Bag)

Reduce classification error

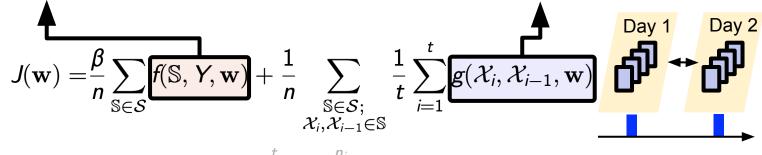


$$+ \frac{1}{n} \sum_{\substack{\mathbb{S} \in \mathcal{S}; \mathcal{X}_i \in \mathbb{S} \\ \mathbf{x}_{ij} \in \mathcal{X}_i}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_i} \sum_{j=1}^{n_i} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

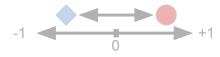


Reduce classification error

Control the probabilities of consecutive days

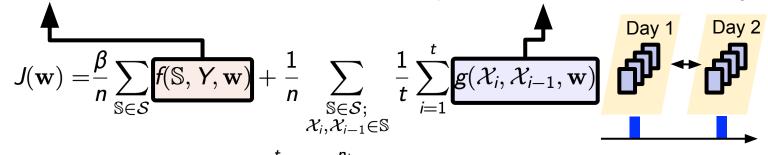


$$+ \frac{1}{n} \sum_{\substack{\mathbb{S} \in \mathcal{S}; \mathcal{X}_i \in \mathbb{S} \\ \mathbf{x}_{ij} \in \mathcal{X}_i}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_i} \sum_{j=1}^{n_i} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

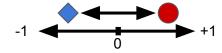


Reduce classification error

Control the probabilities of consecutive days

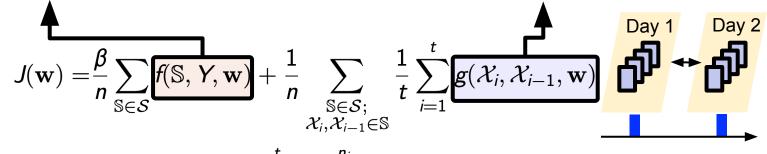


$$+ \frac{1}{n} \sum_{\substack{\mathbb{S} \in \mathcal{S}; \mathcal{X}_i \in \mathbb{S} \\ \mathbf{x}_{ij} \in \mathcal{X}_i}} \frac{1}{t} \sum_{i=1}^t \frac{1}{n_i} \sum_{j=1}^{n_i} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda F$$

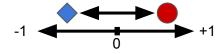


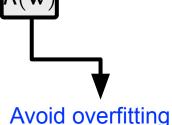
Reduce classification error

Control the probabilities of consecutive days



$$+ \frac{1}{n} \sum_{\substack{\mathbb{S} \in \mathcal{S}; \mathcal{X}_i \in \mathbb{S} \\ \mathbf{x}_{ij} \in \mathcal{X}_i}} \frac{1}{t} \sum_{i=1}^t \frac{1}{n_i} \sum_{j=1}^{n_i} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda F$$





$$J(\mathbf{w}) = \frac{\beta}{n} \sum_{\mathbb{S} \in \mathcal{S}} f(\mathbb{S}, Y, \mathbf{w}) + \frac{1}{n} \sum_{\substack{\mathbb{S} \in \mathcal{S}; \\ \mathcal{X}_{i}, \mathcal{X}_{i-1} \in \mathbb{S}}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

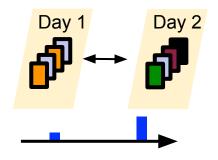
$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{t} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$

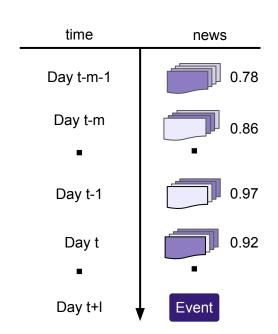
$$= \frac{1}{n} \sum_{\mathbb{S} \in \mathcal{S}; \mathcal{X}_{i} \in \mathbb{S}} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{j=1}^{t} h(\mathbf{x}_{ij}, \mathbf{w}) + \lambda R(\mathbf{w})$$



Precursor Discovery in Nested MIL

```
1: procedure PD-nMIL
           Input: S = \{(S_r, Y_r)\}_{r \in n^+}, \mathcal{M}
 3:
           Output: \{(ps_r, Y_r)\}_{r \in n^+}
           for super bag (S_r, Y_r) do
 4:
 5:
                ps_r = []
                for t = 1,2,...,h(history days) do
 6:
 7:
                     y_t = \lceil \rceil
                     for \mathbf{x}_{tm} \in \mathcal{X}_t do
 8:
 9:
                           \hat{y}_{tm} = \sigma(\hat{\mathbf{w}}\mathbf{x}_{tm})
10:
                           if \hat{y}_{tm} > \tau then
11:
                                y_t \leftarrow (m, \hat{y}_{tm})
                     \operatorname{sort}(y_t) by \hat{y}_{tm} in descending order
12:
13:
                     ps_r \leftarrow \text{m where m in top}(y_t)
           return \{(ps_r, Y_r)\}_{r \in n^+}
```

Selection of precursors based on their estimated probabilities

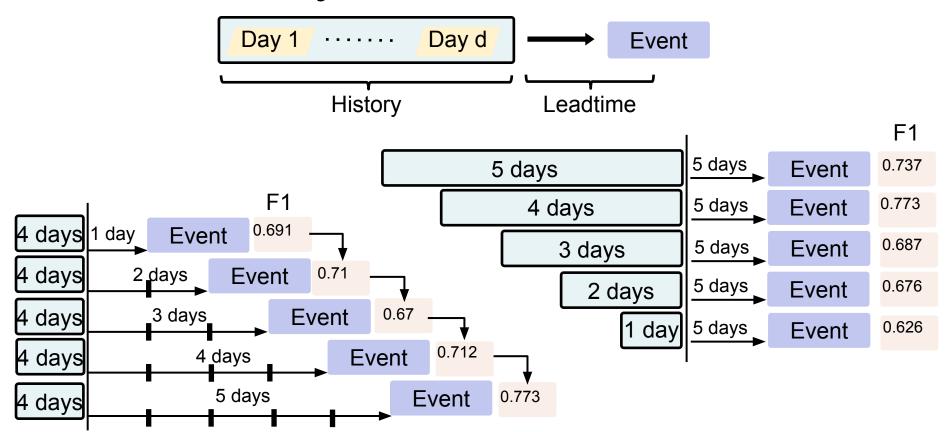


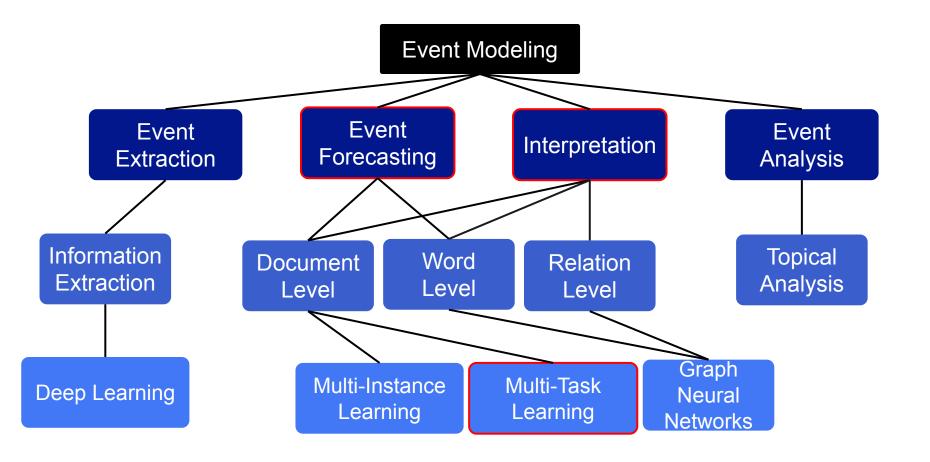
Predictive Performance

	Argentina		Bra	azil	Mexico		
	Acc	F-1	Acc	F-1	Acc	F-1	
SVM	$0.611(\pm 0.034)$	$0.406(\pm0.072)$	$0.693(\pm0.040)$	$0.598(\pm0.067)$	$0.844(\pm0.062)$	$0.814(\pm0.091)$	
MI-SVM	$0.676(\pm 0.026)$	$0.659(\pm 0.036)$	$0.693(\pm 0.040)$	$0.503(\pm0.087)$	$0.880(\pm 0.025)$	$0.853(\pm0.040)$	
rMIL-NOR	$0.330(\pm 0.040)$	$0.411(\pm 0.092)$	$0.505(\pm0.012)$	$0.661(\pm0.018)$	$0.499(\pm 0.009)$	$0.655(\pm0.025)$	
rMIL-AVG	$0.644(\pm 0.032)$	$0.584\ (\pm0.055)$	$0.509(\pm 0.011)$	$0.513(\pm 0.064)$	$0.785(\pm0.038)$	$0.768(\pm0.064)$	
GICF	$0.589(\pm0.058)$	$0.624(\pm 0.048)$	$0.650(\pm 0.055)$	$0.649\ (\pm0.031)$	$0.770(\pm 0.041)$	$0.703(\pm 0.056)$	
nMIL	0.709 (±0.036)	$0.702(\pm 0.047)$	0.723 (±0.039)	$0.686(\pm0.055)$	0.898 (±0.031)	0.902 (±0.030)	
nMIL- Δ	$0.708(\pm 0.039)$	$0.714 (\pm 0.034)$	$0.705(\pm0.048)$	$0.698(\pm 0.045)$	$0.861(\pm 0.014)$	$0.868(\pm 0.014)$	
nMIL- Ω	$0.687(\pm0.038)$	$0.680(\pm 0.045)$	$0.713(\pm 0.028)$	$0.687(\pm 0.038)$	$0.871(\pm 0.013)$	$0.879(\pm 0.014)$	

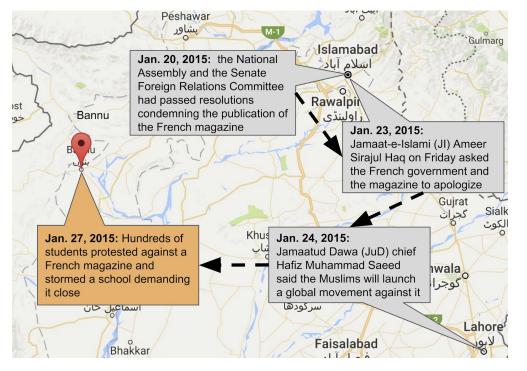
- 1. Nested structure models: nMIL, nMIL-Delta, nMIL-Omega
- 2. The averaged daily estimates help predict events of interest
- 3. Effect of time accumulation > a single input

How Early can NMIL Forecast?



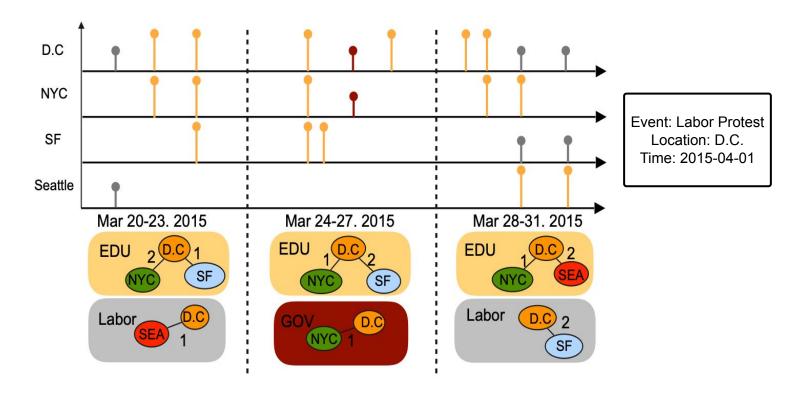


STAPLE: Spatio-Temporal Precursor Learning for Event Forecasting [Ning et al. SDM18]

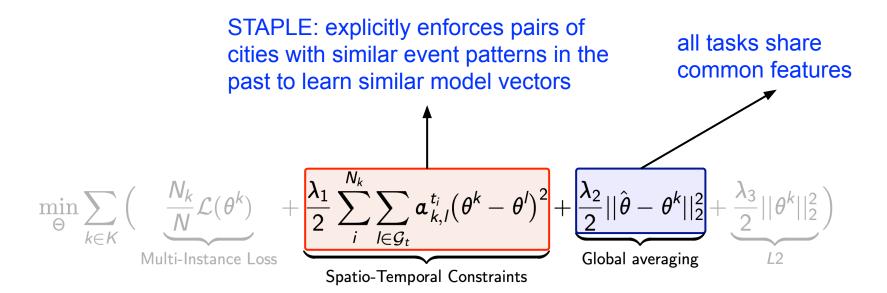


Event, Geolocation, Time

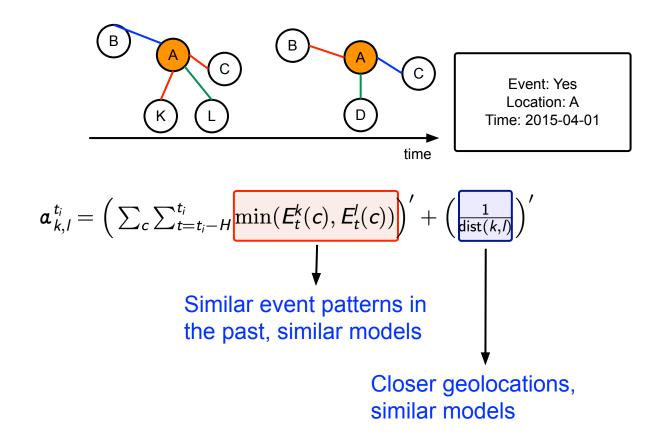
STAPLE: Spatio-Temporal Precursor Learning for Event Forecasting [Ning et al. SDM18]



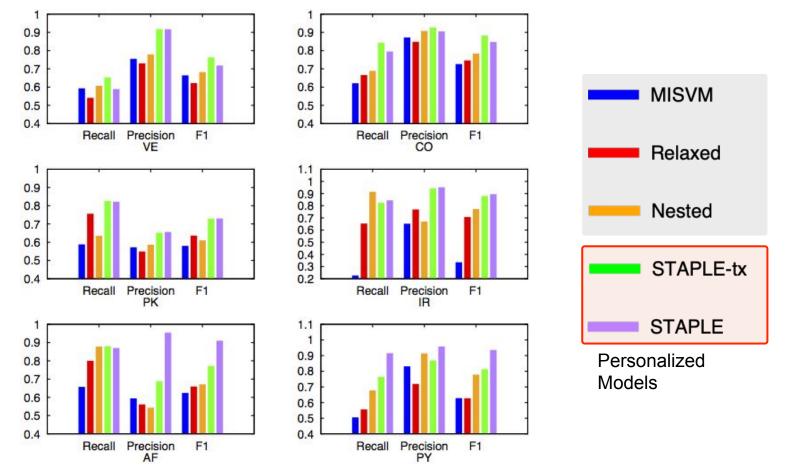
STAPLE: objective function



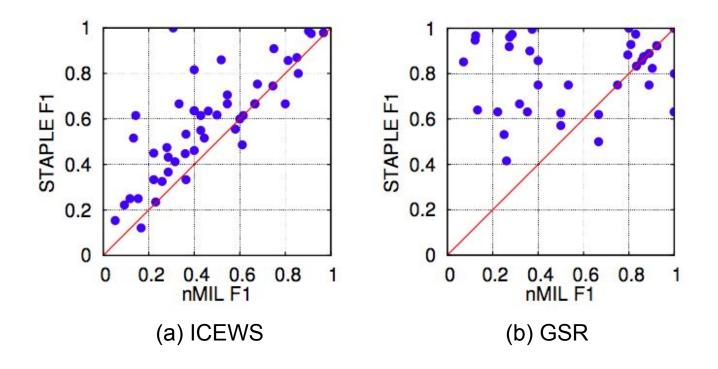
STAPLE: spatio-temporal constraints



STAPLE: Event Prediction Performance



City-level Prediction Performance

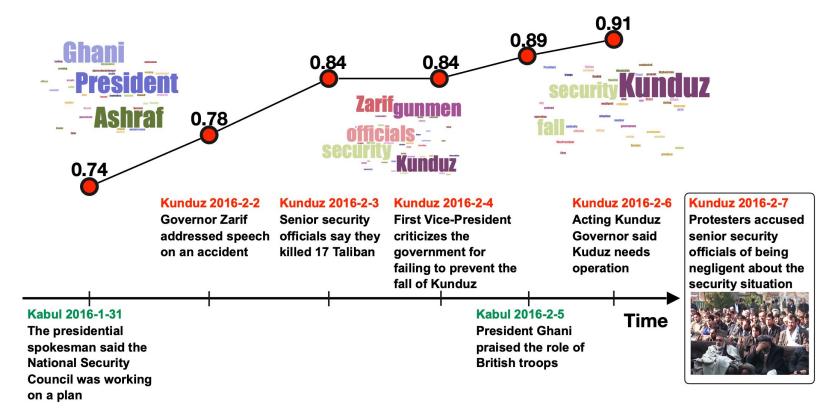


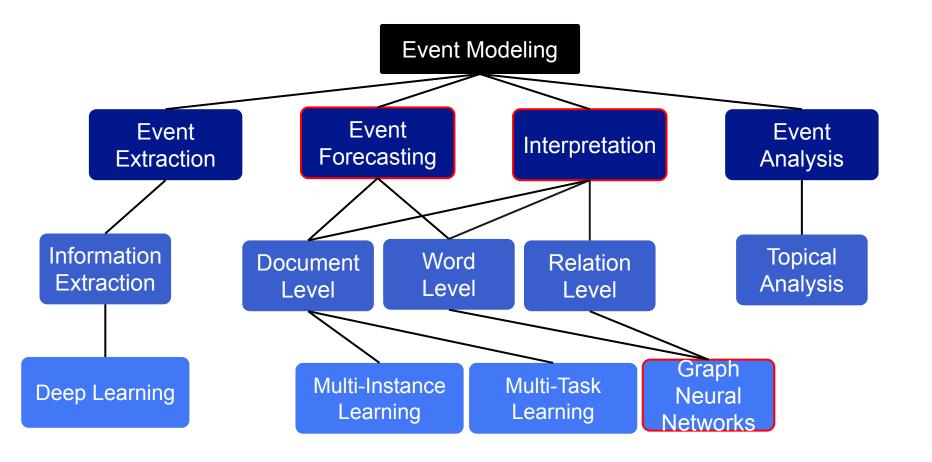
Security-related protest

KUNDUZ RESIDENTS STAGE PROTEST AGAINST MOUNTING INSECURITY

② February 7, 2016 ■ Afghanistan ● 13 Views

Security-related protest - precursors



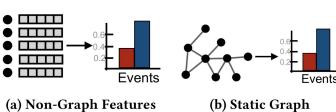


Part 2: Event Graphs for Interpretable Event

Forecasting

Learning Dynamic Context Graphs for Predicting Social Events [Deng et al. KDD19]

- Motivation
 - From the perspective of human analysts and policy makers, forecasting algorithms should
 - not only make accurate predictions
 - but also provide supporting evidence/clue
- Challenges
 - uncertainty of context structure and formulation
 - high dimensional features
 - adaptation of features over time



Model contextual information for event forecasting

Learning Dynamic Context Graphs for Predicting Social Events [S. Deng et al. KDD19]



- Develop a novel graph-based model for predicting events
- Design a mechanism that encodes the dynamic graph structure of words from past input documents to forecast future events.
- Propose a temporal encoding module to alleviate the problem that pre-trained semantic features usually cannot reflect contextual changes over time.

Graph Convolutional Networks

[kipf and welling ICLR17]

Main idea: Pass messages between pairs of nodes

Graph: $G = (\mathcal{V}, \mathcal{E})$

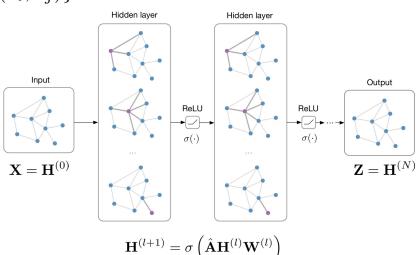
Notation: G = (A, X)

 \mathcal{V} : Set of nodes $\{v_i\}$, $|\mathcal{V}|=N$

• Adjacency matrix $\mathbf{A} \in \mathbb{R}^{N imes N}$

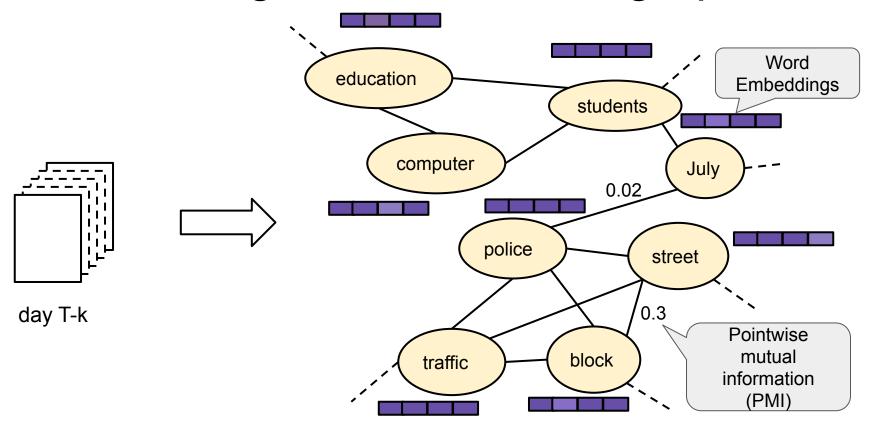
 \mathcal{E} : Set of edges $\{(v_i, v_i)\}$

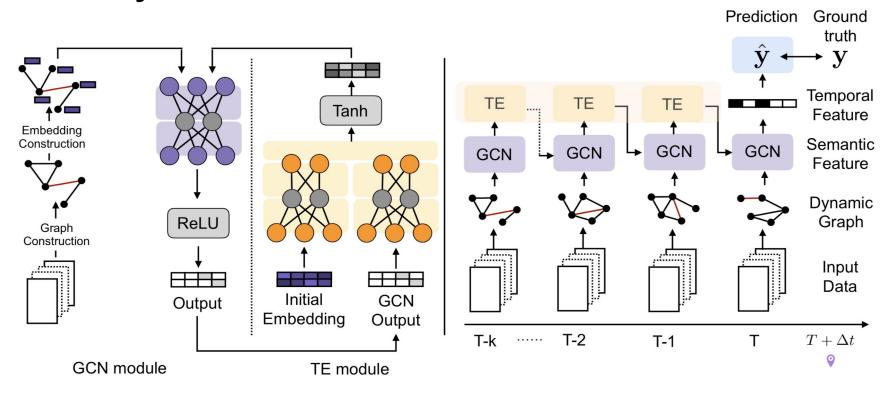
• Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes F}$

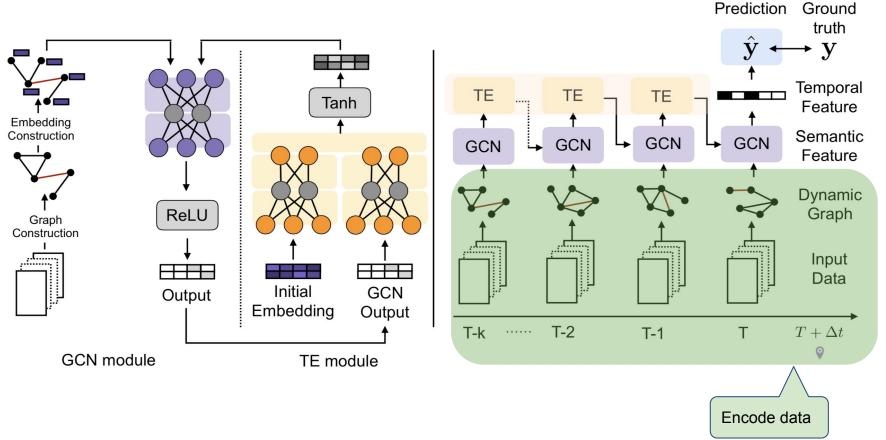


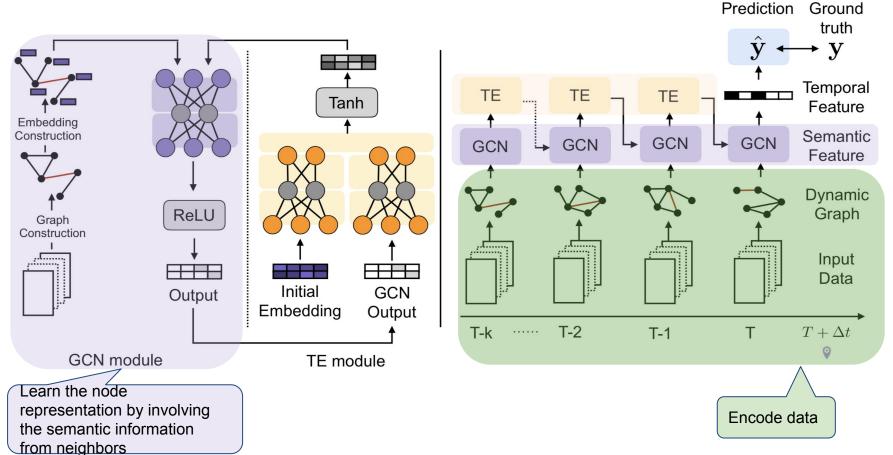
Source: https://tkipf.github.io/graph-convolutional-networks/

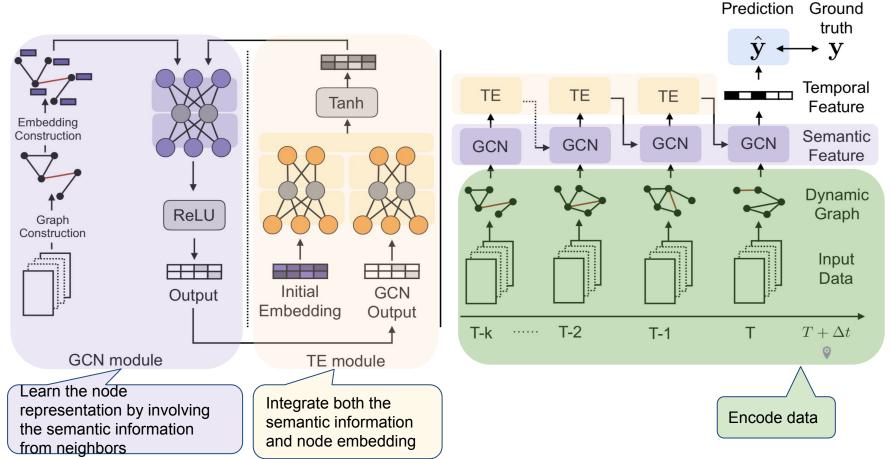
Encoding documents into graphs

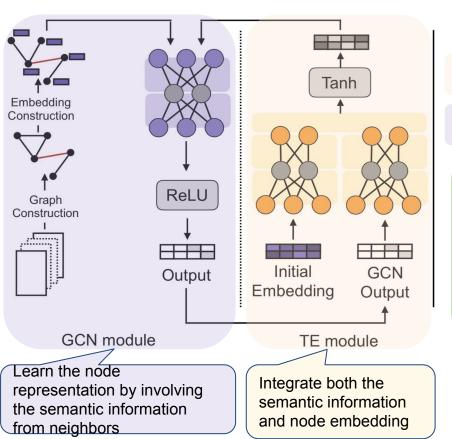


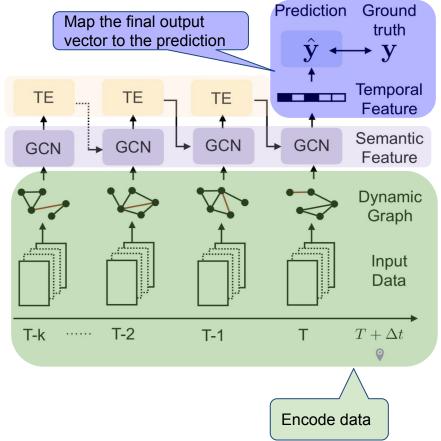












DynamicGCN: experimental evaluation

Non temporal

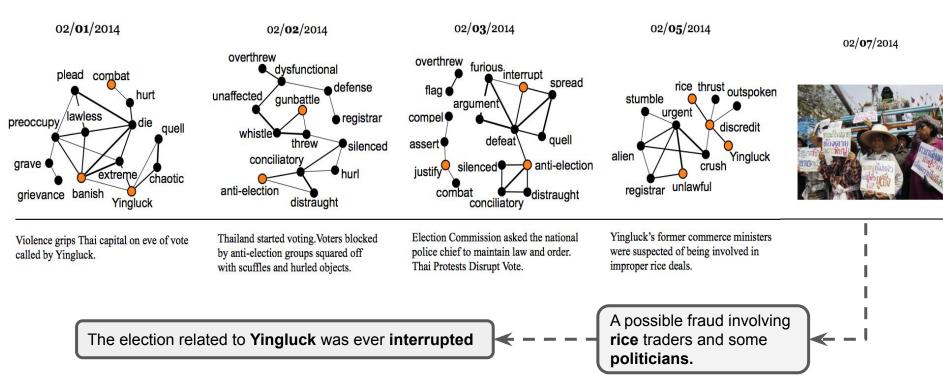
Temporal

	Thailand		Egypt		India		Russia	
	F1	Rec.	F1	Rec.	F1	Rec.	F1	Rec.
LR-Count	0.77	0.713	0.794	0.747	0.618	0.559	0.739	0.721
LR-word	0.715	0.634	0.78	0.751	0.543	0.433	0.705	0.689
LR-NGram	0.7293	0.6535	0.761	0.7039	0.552	0.441	0.714	0.714
GCN	0.761	0.758	0.849	0.816	0.653	0.627	0.784	0.826
nMIL	0.73	0.661	0.723	0.797	0.628	0.719	0.76	0.769
GCN+GRU	0.782	0.769	0.85	0.825	0.655	0.621	0.787	0.809
GCN+LSTM	0.781	0.77	0.851	0.827	0.649	0.614	0.786	0.791
GCN+RNN	0.757	0.755	0.851	0.82	0.642	0.602	0.787	0.809
Ours	0.797	0.773	0.862	0.829	0.669	0.627	0.804	0.799

Data: Integrated Crisis Early Warning System (ICEWS) Dataverse

DynamicGCN: A Case Study

Context subgraphs generated from the train model.

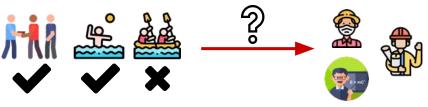


Dynamic Knowledge Graph based Multi-Event Forecasting [Deng et al. KDD20]

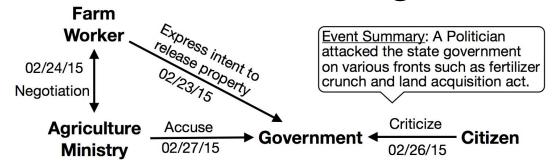
- Existing approaches for predicting:
 - an event type [Deng et al. KDD19];
 - an event subtype [Gao et al, AAAI19];

→ Limitations:

- Unable to identify concurrent events of multiple types,
- and event participants/actors.



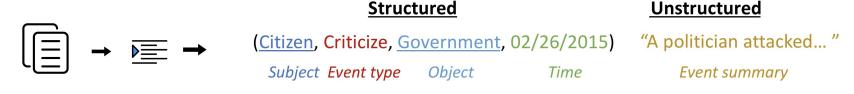
Dynamic Knowledge Graph based Multi-Event Forecasting [Deng et al. KDD20]



- Design a novel multi-event multi-actor forecasting framework
- Introduce an encoding method for integrating both dynamic event graphs and text data into graph-based relational features.
- Propose a context-aware embedding fusion method, which incorporates attention to fuse semantic features of words with entities and event types.

Problem Formulation

- Problems
 - Multi-event prediction $\mathbb{P}(\mathbf{y}_t|X_{1:t-1})$
 - \circ Multi-actor prediction $\mathbb{P}(\mathbf{a}_t | y_t, X_{1:t-1})$
- Event data

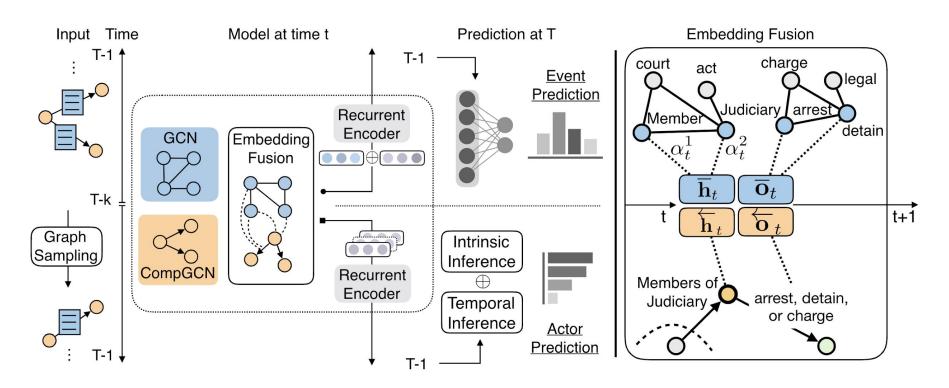


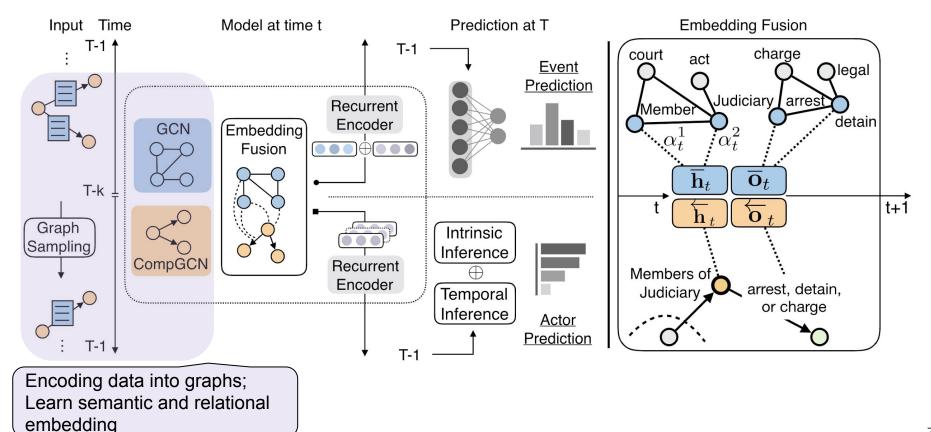
Methodology

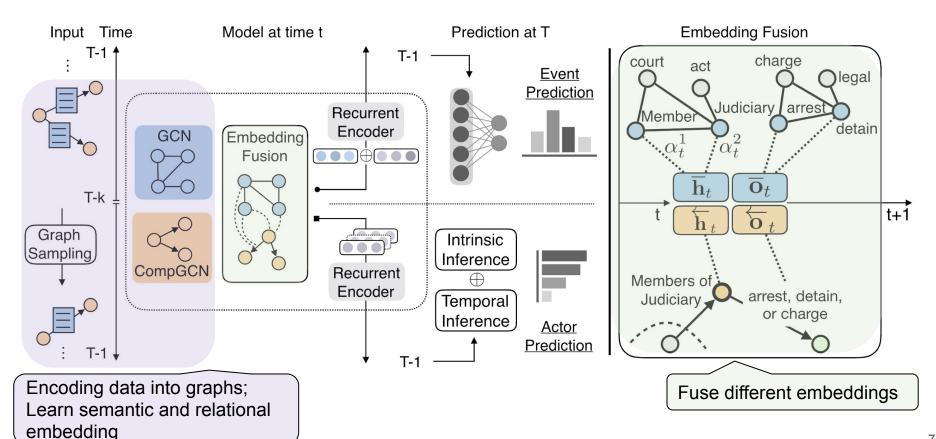
- Data Encoding
 - Event graph (built from structured data)
 - Multi-relational, directed graph with time-stamped edges
 - Node: entity
 - Edge: event type

- Word graph (built from unstructured data)
 - Undirected and weighted graph
 - Node: word
 - Edge weight: PMI

Model Training







Context-aware Embedding Fusion

An event: (Citizen, Criticizes, Government, 02/26/2015) "A Politician attacked the state government on various fronts such as <u>fertilizer crunch</u> and <u>land acquisition act.</u>"

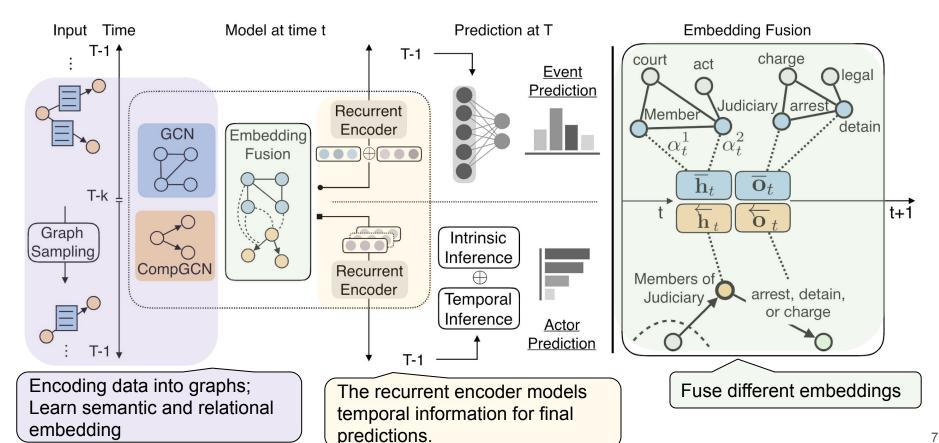
Context-aware Embedding Fusion

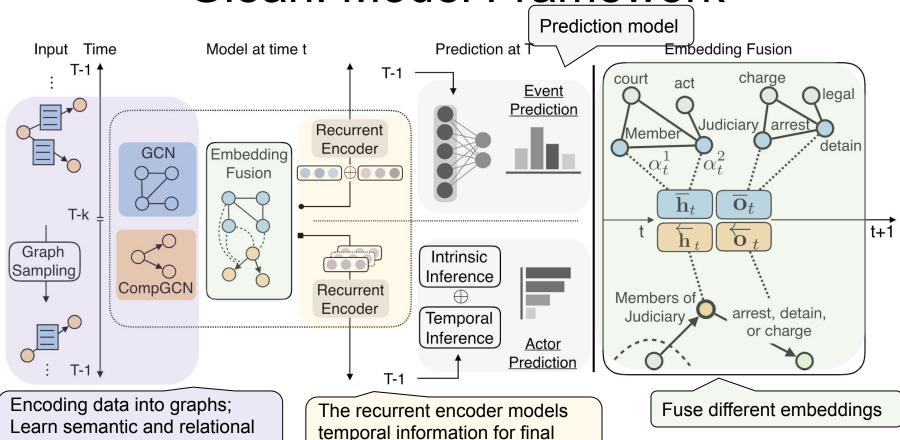
An event: (Citizen, Criticizes, Government, 02/26/2015) "A Politician attacked the state government on various fronts such as <u>fertilizer crunch</u> and <u>land acquisition act</u>."

Relational embedding learned from event graphs. $\alpha_{t,(i,\omega)} = \frac{\exp\left(\operatorname{Attn}\left(\overleftarrow{\mathbf{h}}_{t,(i)}, \overleftarrow{\mathbf{h}}_{\omega}\right)\right)}{\exp\left(\sum_{\varphi \in \mathcal{W}_i} \operatorname{Attn}\left(\overleftarrow{\mathbf{h}}_{t,(i)}, \overleftarrow{\mathbf{h}}_{\varphi}\right)\right)} \in \mathbb{R}, \quad (7)$

$$\mathbf{h}_{t,(i)}^{\bullet} = \tanh \left(\mathbf{W}_{\alpha}^{\mathsf{T}} \cdot \left[\underbrace{\mathbf{h}_{t,(i)}}_{\text{rel.}}; \sum_{\omega \in \mathcal{W}_{i}} \alpha_{t,(i,\omega)} \overline{\mathbf{h}}_{\omega} \right] \right) \in \mathbb{R}^{d}, \quad (8)$$

Fused embedding that enhances the information of entities and event types from words.





predictions.

embedding

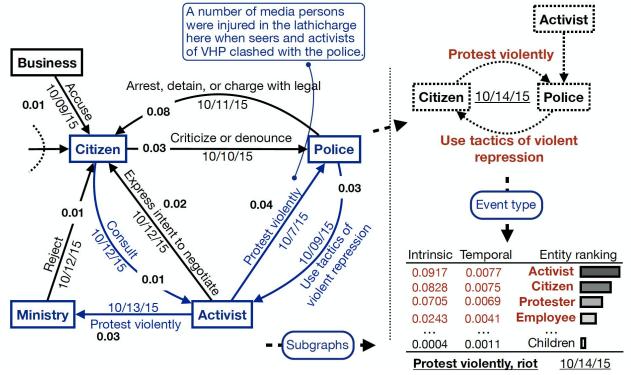
80

Glean: Experimental Evaluation

N 414! 4					•											
Multi-event	India			Russia			Nigeria			Afghanistan			Iran			
prediction	F1	F2	Recall	F1	F2	Recall	F1	F2	Recall	F1	F2	Recall	F1	F2	Recall	
DNN	52.49	54.65	56.38	53.81	58.44	62.61	53.54	60.64	67.70	55.77	61.80	68.14	57.54	61.85	66.19	
MLKNN	52.33	54.27	55.77	51.38	55.29	58.62	26.92	28.10	28.97	45.43	48.10	50.35	53.86	56.68	59.01	
BRKNN	50.36	53.05	56.00	47.46	51.53	56.64	42.48	47.28	52.45	49.89	54.98	61.52	48.56	52.24	56.77	
MLARAM	33.68	33.93	34.10	25.67	26.27	26.71	41.78	45.56	48.80	33.84	34.66	35.26	27.46	27.71	27.88	
DynGCN	41.80	42.57	43.19	52.81	56.77	60.14	46.27	54.65	54.65	50.05	53.97	57.75	54.22	56.93	59.21	
T-GCN	60.73	64.14	67.20	56.36	61.86	67.66	56.06	63.88	72.19	60.04	67.82	76.93	61.65	67.35	73.77	
RENET ¹	55.10	57.26	58.99	54.47	58.98	63.02	53.47	60.07	66.54	55.07	60.60	66.32	58.89	63.41	68.09	
RENET ²	58.44	61.46	64.18	55.85	60.86	65.66	56.44	64.37	72.82	60.58	68.47	77.75	61.66	67.24	73.52	
$Glean_{-\mathrm{fusion}}$	65.91	70.87	75.80	58.92	65.60	73.47	58.13	66.95	77.07	62.28	71.14	82.36	63.84	70.78	79.60	
Glean	66.69	71.95	77.31	58.92	65.64	73.57	58.76	68.13	79.49	62.48	71.43	82.84	64.12	71.25	80.46	
% relative gain	9.8%	10.9%	15.0%	4.5%	6.1%	8.7%	4.8%	5.8%	10.1%	3.1%	4.3%	6.5%	4.0%	5.8%	9.1%	
Multi-actor		India			Russia			Nigeria			Afghanistan			Iran		
prediction		5.66.0010766311.00	-		10,000,000,000,000,000							_	112	570000000000		
prediction	H @ 1	3	10	1	3	10	1	3	10	1	3	10	1	3	10	
DNN	2.09	11.01	33.87	1.46	9.72	36.40	5.10	17.06	43.35	8.55	17.42	35.32	10.71	19.48	26.50	
RENET ³	8.87	21.57	39.85	16.52	22.31	40.21	4.02	11.53	26.95	7.28	18.65	37.44	12.81	18.36	37.44	
tRGCN	9.74	22.74	41.04	18.83	30.79	44.62	6.73	15.17	31.69	9.58	24.14	49.17	12.93	22.26	34.98	
tCompGCN	9.62	21.91	40.53	18.27	30.20	44.79	6.50	14.95	31.06	9.64	23.67	49.04	12.79	21.43	34.88	
Glean_temp	13.39	24.50	43.68	18.24	31.15	43.27	6.16	14.41	26.98	9.21	22.27	47.03	11.01	17.96	29.87	
Glean_ _{fusion}	13.95	27.03	45.73	20.25	34.64	48.10	7.63	18.06	35.84	12.28	29.82	56.89	14.27	24.41	39.74	
Glean	14.01	27.17	45.73	20.49	34.36	48.10	7.66	18.03	35.85	12.29	30.04	56.74	14.31	24.27	39.75	
% relative gain	4.6%	10.9%	4.7%	8.8%	11.2%	7.4%	13.8%	5.9%	-	27.5%	24.4%	15.7%	10.7%	9.7%	6.2%	

Glean: Case study 1

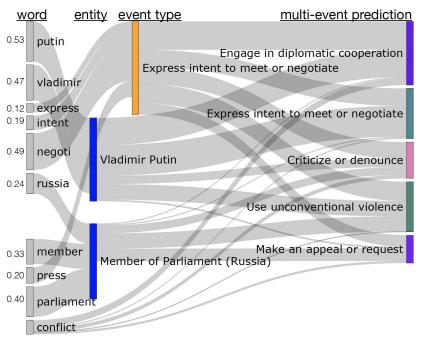
Identifying important historical events



- The red font indicates the model prediction.
- The blue part represents the subgraph sampled for actor prediction.

Glean: Case study 2

Identify Semantic Contexts and Feature Flows

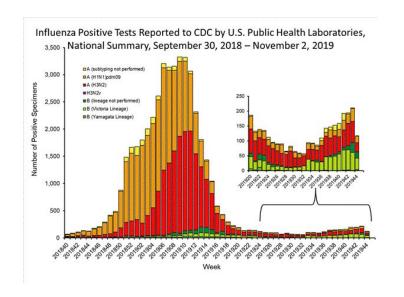


- Attention scores quantify the importance of words in contributing the entity/event type embedding for prediction
- > parliament contributes more than member in Member of Parliament

Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction

[Deng et al. CIKM20]

The proposed model:
 a graph-based deep learning framework
 with time series attributes for each node
 to study the spatio-temporal influence of
 long-term ILI predictions.



Existing work

- Traditional causal models [Bisset et al. ICS09]
 - compartmental models and agent-based models, employ disease progression mechanisms such as Susceptible-Infectious-Recovered (SIR) to capture the dynamics of ILI diseases.
- Statistical models such as Autoregressive
 - autoregressive (AR) and its variants (e.g., VAR)
- Deep learning methods [Venna et al. IEEE18]
 - o recurrent neural networks, convolutional neural networks, etc.

Challenges

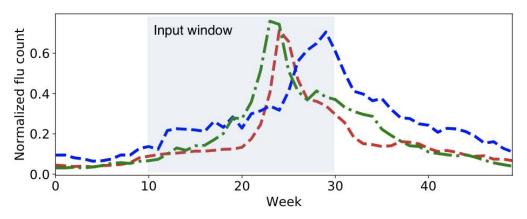
- The temporal dependency is hard to capture with short-term input data.
- The influence of other locations often changes over time.
- Adequate data sources are required to achieve decent performance.

Problem Formulation

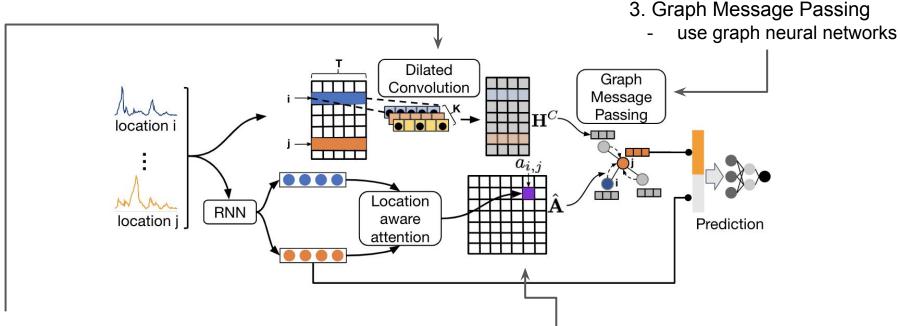
A graph-based propagation model

- N locations. Each location (e.g., a state) is a node; associated with a time series input for a window T
- Input: ILI patient counts for T weeks
- To predict the ILI patient counts at a future time point T+h

h refers to the horizon/lead time of the prediction



Cola-GNN: Model Framework



- 2. Multi-Scale Dilated Convolution
 - encode local patterns with short-term and long-term trends by employing dilated convolution layers.

- 1. Directed Spatial Influence Learning
 - dynamically model the impact of one location on other locations during the epidemics.

Cola-GNN: Experimental Evaluation

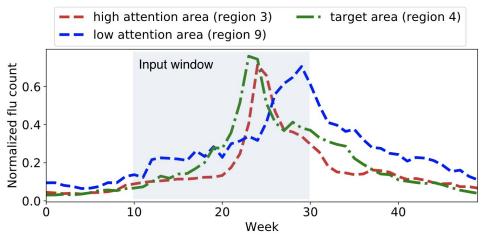
Short-term leadtime=2,3

long-term leadtime=5,10,15

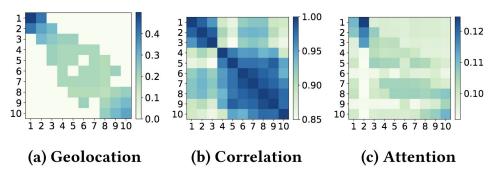
		Japai	n-Prefec	tures			U	S-Regio	ns		US-States					
$RMSE(\downarrow)$	2	3	5	10	15	2	3	5	10	15	2	3	5	10	15	
GAR	1232	1628	1988	2065	2016	536	715	991	1377	1465	150	187	236	314	340	
AR	1377	1705	2013	2107	2042	570	757	997	1330	1404	161	204	251	306	327	
VAR	1361	1711	2025	1942	1899	741	870	1059	1270	1299	290	276	295	324	352	
ARMA	1371	1703	2013	2105	2041	560	742	989	1322	1400	161	200	250	306	326	
RNN	1001	1259	1376	1696	1629	513	689	896	1328	1434	149	181	217	274	315	
LSTM	1052	1246	1335	1622	1649	<u>507</u>	688	975	1351	1477	150	<u>180</u>	<u>213</u>	276	307	
RNN+Attn	1166	1572	1746	1612	1823	613	753	1065	1367	1368	152	186	234	315	334	
DCRNN	1502	1769	2024	2019	1992	711	874	1127	1411	1434	165	209	244	299	298	
CNNRNN-Res	1133	1550	1942	1865	1862	571	738	936	1233	1285	205	239	267	<u>260</u>	<u>250</u>	
LSTNet	1133	1459	1883	1811	1884	554	801	998	<u>1157</u>	1231	199	249	299	292	292	
ST-GCN	996	1115	1129	1541	1527	697	807	1038	1290	1286	189	209	256	289	292	
Cola-GNN	929	1051	1117	1372	1475	480	636	855	1134	1203	136	167	202	241	237	
% relative gain	6.7%	5.7%	1.1%	11.0%	3.4%	5.3%	7.6%	4.6%	2.0%	2.3%	8.7%	7.2%	5.2%	7.3%	5.2%	
PCC(↑)	2	3	5	10	15	2	3	5	10	15	2	3	5	10	15	
GAR	0.804	0.626	0.339	0.288	0.470	0.932	0.881	0.790	0.581	0.485	0.945	0.914	0.875	0.777	0.742	
AR	0.752	0.579	0.310	0.238	0.483	0.927	0.878	0.792	0.612	0.527	0.940	0.909	0.863	0.773	0.723	
VAR	0.754	0.585	0.300	0.426	0.474	0.859	0.797	0.685	0.508	0.467	0.765	0.790	0.758	0.709	0.653	
ARMA	0.754	0.579	0.310	0.253	0.486	0.927	0.876	0.792	0.614	0.520	0.939	0.909	0.862	0.773	0.725	
RNN	0.892	0.833	0.821	0.616	0.709	0.940	0.895	0.821	0.587	0.499	0.948	0.922	0.886	0.821	0.758	
LSTM	0.896	0.873	0.853	0.681	0.695	0.943	0.895	0.812	0.586	0.488	0.948	0.922	0.889	0.820	0.771	
RNN+Attn	0.850	0.668	0.590	0.741	0.522	0.887	0.859	0.752	0.554	0.552	0.947	0.922	0.884	0.780	0.739	
DCRNN	0.697	0.537	0.292	0.342	0.525	0.897	0.849	0.760	0.604	0.558	0.941	0.886	0.886	0.829	0.837	
CNNRNN-Res	0.852	0.673	0.380	0.438	0.467	0.920	0.862	0.782	0.552	0.485	0.904	0.860	0.822	0.820	0.847	
LSTNet	0.846	0.728	0.432	0.518	0.515	0.935	0.868	0.746	0.609	0.533	0.913	0.850	0.759	0.760	0.802	
ST-GCN	0.902	0.880	0.872	0.735	0.773	0.879	0.840	0.741	0.644	0.619	0.907	0.778	0.823	0.769	0.774	
Cola-GNN	0.915	0.901	0.890	0.813	0.753	0.946	0.909	0.835	0.717	0.639	0.955	0.933	0.897	0.822	0.856	
% relative gain	1.4%	2.4%	2.1%	9.7%	-	0.6%	1.6%	1.7%	10.2%	3.2%	0.7%	1.2%	0.9%	0.1%	1.1%	

Cola-GNN: A Case Study

Predict the patient count for region 4



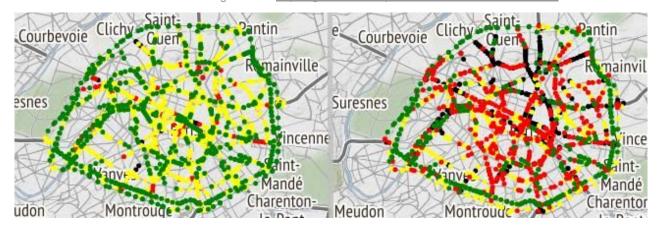
Comparison of predefined matrix and attention matrix.



Traffic Prediction

 Predict traffic volumes, utilising historical speed and volume data.

image source https://github.com/raphaelauv/Paris-Traffic-Prediction



^[1] Lv, Yisheng, et al. "Traffic flow prediction with big data: a deep learning approach." IEEE Transactions on Intelligent Transportation Systems 16.2 (2014): 865-873.

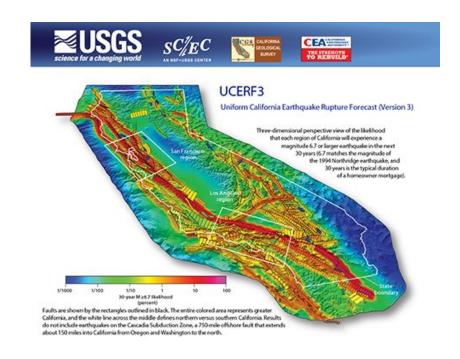
^[2] Yao, Huaxiu, et al. "Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.

^[3] Guo, Shengnan, et al. "Attention based spatial-temporal graph convolutional networks for traffic flow forecasting." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.

Earthquake Prediction

 Predict the time, location, and magnitude of future earthquakes.

The epidemic type aftershock sequence (ETAS) Model



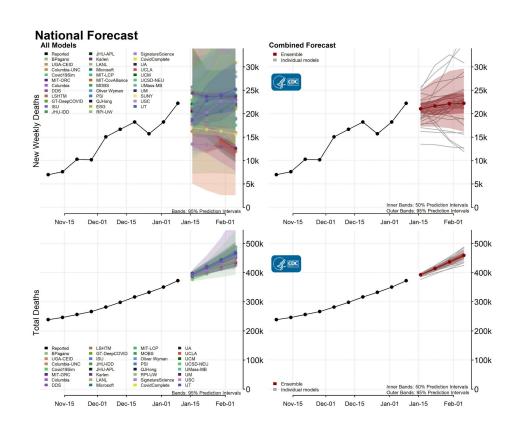
^[1] http://www.wgcep.org/UCERF3

^[2] Bansal, A.R., Dimri, V.P. & Babu, K.K. Epidemic type aftershock sequence (ETAS) modeling of northeastern Himalayan seismicity. J Seismol 17, 255–264 (2013). https://doi.org/10.1007/s10950-012-9314-7

Epidemic Prediction

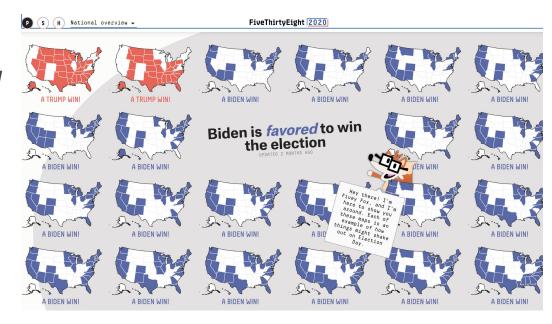
 Predict the time, peak and intensity of an infectious disease at a certain location in the future.

Forecasting of new reported COVID-19 cases over next 4 weeks.



Election Prediction

Forecasting the 2020 presidential election between President Donald Trump and Joe Biden by FiveThirtyEight

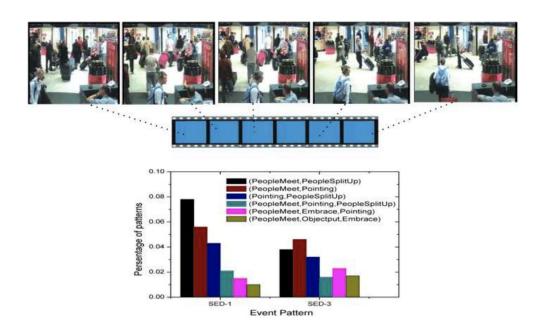


^[1] https://projects.fivethirtyeight.com/2020-election-forecast/

^[2] Dwi Prasetyo, Nugroho, and Claudia Hauff. "Twitter-based election prediction in the developing world." Proceedings of the 26th ACM Conference on Hypertext & Social Media. 2015.

Video Event Detection

 Identifying the temporal range of an event in a video (i.e. when) and sometimes the location of the event as well (i.e. where).



Civil Unrest Forecasting

 predicting the occurrence of a future protest within a target city using open source data.

EMBERS

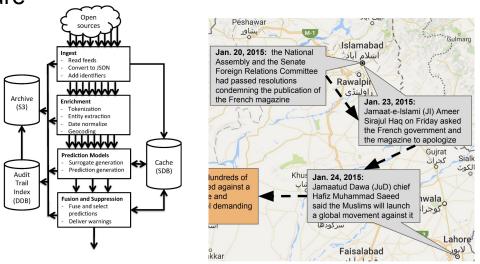


Figure 2: EMBERS system architecture

^[1] Ramakrishnan, Naren, et al. "Beating the news' with EMBERS: forecasting civil unrest using open source indicators." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014.

^[2] Ning, Yue, et al. "STAPLE: Spatio-Temporal Precursor Learning for Event Forecasting." Proceedings of the 2018 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2018.

Conclusion and Future Directions

- Introduction and motivation for event predictions
 - Definitions and challenges
- Precursor Identification for Interpretable Event Forecasting
 - Representation Learning and Deep Learning
 - to automatically encode raw input and learn hidden features
 - Multi-Instance Learning
 - Identify key characteristics in semi-supervised event modeling
 - Multi-Task Learning
 - to infer relationships across different tasks (locations)
- Event Graphs for Interpretable Event Forecasting
 - Graph Neural Network
 - To model associations among words in word graphs, entities in knowledge graphs, and locations in geographic networks

Conclusion and Future Directions

Future directions

Event modeling

- Data integration for multiple sources
- Learning hierarchies of spatial precursors
- Semantic encoding and optimization

Precursor Identification

- Transparent event forecasting model
- Model interpretation
- Causal interpretation

Thank you

If you have any questions, feel free to contact:
Songgaojun Deng: sdeng4@stevens.edu
Yue Ning: yue.ning@stevens.edu
Huzefa Rangwala: rangwala@gmu.edu